K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 12 2023

a: Gọi AH là tiếp tuyến chung của hai đường tròn (O) và (O'), H∈MN

Xét (O) có

HM,HA là các tiếp tuyến

Do đó: HM=HA và HO là phân giác của góc MHA

Xét (O') có

HA,HN là các tiếp tuyến

Do đó: HA=HN và HO' là phân giác của góc AHN

Ta có: HM=HA

HN=HA

Do đó: HM=HN

=>H là trung điểm của MN

Xét ΔAMN có

AH là đường trung tuyến

\(AH=\dfrac{MN}{2}\)

Do đó: ΔAMN vuông tại A

=>\(\widehat{MAN}=90^0\)

b: HO là phân giác của góc MHA

=>\(\widehat{MHA}=2\cdot\widehat{OHA}\)

HO' là phân giác của góc AHN

=>\(\widehat{AHN}=2\cdot\widehat{AHO'}\)

Ta có: \(\widehat{MHA}+\widehat{NHA}=180^0\)(hai góc kề bù)

=>\(2\cdot\left(\widehat{OHA}+\widehat{O'AH}\right)=180^0\)

=>\(2\cdot\widehat{OHO'}=180^0\)

=>\(\widehat{OHO'}=90^0\)

Xét ΔHO'O vuông tại H có HA là đường cao

nên \(HA^2=OA\cdot O'A\)

=>\(HA^2=9\cdot4=36\)

=>\(HA=\sqrt{36}=6\left(cm\right)\)

MN=2*HA

=>MN=2*6=12(cm)

10 tháng 6 2015

vẽ hình rồi mình làm cho

18 tháng 12 2022

loading...

a) Trong (O) có: KB,KM là hai tiếp tuyến cắt nhau tại K.

\(\Rightarrow KB=KM\left(1\right)\)

Trong (I) có: KC,KM là hai tiếp tuyến cắt nhau tại K.

\(\Rightarrow KC=KM\left(2\right)\)

\(\left(1\right),\left(2\right)\Rightarrow KB=KC\)

△BME nội tiếp đường tròn (O) đường kính BE.

⇒△BME vuông tại MM.

\(\Rightarrow\widehat{BME}=90^0\)

b) Ta có: K thuộc đường trung trực của BM (\(KB=KM\))

O thuộc đường trung trực của BM \(\left(OB=OM\right)\)

⇒OK là đường trung trực của BM mà OK cắt BM tại N.

⇒N là trung điểm BM.

- Ta có: K thuộc đường trung trực của CM (\(KC=KM\))

I thuộc đường trung trực của CM \(\left(IC=IM\right)\)

⇒IK là đường trung trực của CM mà IK cắt CM tại P.

⇒P là trung điểm IK và \(CM\perp IK\) tại P.

Xét △BCM có: N là trung điểm BM, P là trung điểm CM.

⇒NP là đường trung bình của △BCM.

⇒NP//CM.

c) *Hạ \(IH\perp OB\) tại H.

Xét tứ giác BCIH có: \(\widehat{HBC}=\widehat{BCI}=\widehat{BHI}=90^0\)

⇒BCIH là hình chữ nhật.

\(\Rightarrow BC=IH;IC=BH=r\)

Xét △ICK vuông tại C có IP là đường cao:

\(\Rightarrow IK.IP=IC^2=r^2\)

Xét △OHI vuông tại H có:

\(HI^2+OH^2=OI^2\)

\(\Rightarrow HI=\sqrt{OI^2-OH^2}=\sqrt{\left(r+R\right)^2-\left(r-R\right)^2}=\sqrt{4Rr}=2\sqrt{Rr}\)

Mà \(BC=HI\Rightarrow BC=2\sqrt{Rr}\left(1'\right)\)

Ta có: \(2\sqrt{IM.IO-IK.IP}=2\sqrt{r\left(r+R\right)-r^2}=2\sqrt{Rr}\left(2'\right)\)

\(\left(1'\right),\left(2'\right)\Rightarrow BC=2\sqrt{IM.IO-IK.IP}\)

 

22 tháng 9 2018

a)AD tính chất 2 tiếp tuyến  cắt nhau

b)BC=2*căn(R1*R2)