CHỨNG MINH
H=1-1/2 mũ 2- 1/ 3 mũ 2 -......-1/2004 mũ 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(\dfrac{2003}{2004}\right)^0-\left(\dfrac{1}{3}\right)^3\div\left(\dfrac{1}{3}\right)^2\)
\(=1-\dfrac{1}{3}\)
\(=\dfrac{2}{3}\)
Đặt biểu thức trên là A
Chứng minh A\(⋮4\)
Ta có :A=\(3+3^2+3^3+...+3^{59}+3^{60}\)
A=\(\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{59}+3^{60}\right)\)
A=\(3\left(1+3\right)+3^3\left(1+3\right)+...+3^{59}\left(1+3\right)\)
A=\(3.4+3^3.4+...+3^{59}.4\)
A=\(4\left(3+3^3+...+3^{59}\right)\)
Vậy \(A⋮4\)
Chứng minh \(A⋮13\)
Ta có :A=\(3+3^2+3^3+...+3^{59}+3^{60}\)
A=\(\left(3+3^2+3^3\right)+...+\left(3^{58}+3^{59}+3^{60}\right)\)
A=\(3\left(1+3+3^2\right)+...+3^{58}\left(1+3+3^2\right)\)
A=\(3.13+...+3^{58}.13\)
A=\(13\left(3+...+3^{58}\right)\)
Vậy \(A⋮13\)