Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(\dfrac{2003}{2004}\right)^0-\left(\dfrac{1}{3}\right)^3\div\left(\dfrac{1}{3}\right)^2\)
\(=1-\dfrac{1}{3}\)
\(=\dfrac{2}{3}\)
Lần sau bạn lưu ý gõ đề bằng bộ gõ công thức toán $(\sum)$ để được hỗ trợ tốt hơn.
Lời giải:
Ta có:
$\frac{1}{3^2}< \frac{1}{2.3}$
$\frac{1}{4^2}< \frac{1}{3.4}$
...........
$\frac{1}{1990^2}< \frac{1}{1989.1990}$
Cộng tất cả theo vế:
$\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{1989.1990}< \frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{1989.1990}=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{1989}-\frac{1}{1990}$
$=\frac{1}{2}-\frac{1}{1990}< \frac{1}{2}$
$\Rightarrow \frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{1990^2}< \frac{1}{2^2}+\frac{1}{2}=\frac{3}{4}$
Ta có đpcm.
Ta có:
\(A=\frac{1}{2^2}+\frac{1}{2^4}+\frac{1}{2^6}+...+\frac{1}{2^{100}}\)
\(\Rightarrow2^2A=1+\frac{1}{2^2}+\frac{1}{2^4}+...+\frac{1}{2^{98}}\)
\(\Rightarrow4A=1+\frac{1}{2^2}+\frac{1}{2^4}+...+\frac{1}{2^{98}}\)
\(\Rightarrow4A-A=1-\frac{1}{2^{100}}< 1\Rightarrow3A< 1\Rightarrow A< \frac{1}{3}\left(đpcm\right)\)
3.
a) \(\left(x-1\right)^3=125\)
=> \(\left(x-1\right)^3=5^3\)
=> \(x-1=5\)
=> \(x=5+1\)
=> \(x=6\)
Vậy \(x=6.\)
b) \(2^{x+2}-2^x=96\)
=> \(2^x.\left(2^2-1\right)=96\)
=> \(2^x.3=96\)
=> \(2^x=96:3\)
=> \(2^x=32\)
=> \(2^x=2^5\)
=> \(x=5\)
Vậy \(x=5.\)
c) \(\left(2x+1\right)^3=343\)
=> \(\left(2x+1\right)^3=7^3\)
=> \(2x+1=7\)
=> \(2x=7-1\)
=> \(2x=6\)
=> \(x=6:2\)
=> \(x=3\)
Vậy \(x=3.\)
Chúc bạn học tốt!