ai giúp tôi với
x*12+x:0,2=32
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=x+\dfrac{0,2-0,375+\dfrac{5}{11}}{-0,3+\dfrac{9}{16}-\dfrac{15}{22}}\)
\(=x+\dfrac{\dfrac{1}{5}-\dfrac{3}{8}+\dfrac{5}{11}}{-\left(\dfrac{3}{10}-\dfrac{9}{16}+\dfrac{15}{22}\right)}\)
\(=x+\dfrac{\dfrac{1}{5}-\dfrac{3}{8}+\dfrac{5}{11}}{-\dfrac{3}{2}\left(\dfrac{1}{5}-\dfrac{3}{8}+\dfrac{5}{11}\right)}\)
\(=x+\dfrac{1}{-\dfrac{3}{2}}\)
\(=x+\dfrac{-2}{3}\)
Với \(x=-\dfrac{1}{3}\), ta được:
\(B=-\dfrac{1}{3}+\dfrac{-2}{3}=-\dfrac{3}{3}=-1\)
\(m=\)28 - \(|3x+12|\)
\(|3x+12|\)\(\ge0\)với \(\forall\)x
\(\Rightarrow\)28 - \(|3x+12|\)\(\le\)28
\(\Rightarrow\)\(m\le28\)
Do đó \(max\)\(m\)là 28.
Dấu "=" xảy ra khi \(|3x+12|\)= 0 \(\Rightarrow\)3x + 12 = 0 \(\Rightarrow\)3x = -12 \(\Rightarrow\)x = -4.
Vậy \(max\)\(m\)là 28 khi x = -4
~ HOK TỐT ~
\(x^7+x^6+x^4+x^3+x^2+1\)
\(=x^4\left(x^3+x^2+1\right)+\left(x^3+x^2+1\right)\)
\(=\left(x^3+x^2+1\right)\left(x^4+1\right)\)
a: =25x^2-10x+25x^2-1-10x=50x^2-20x-1
b: =x^2-12x+32-x^2+12x-32
=0
a) \(\left(y-8,5\right)\times12=69,6\)
\(\Rightarrow\left(y-8,5\right)=5,8\Rightarrow y=14,3\left(=5,8+8,5\right)\)
b) \(32\times\left(y+0,2\right)=197,2\)
\(\Rightarrow y+0,2=5,6\Rightarrow y=5,8\left(=5,6+0,2\right)\)
Chúc bn hok tot!!!
a, => -12+x-9 = 0
=> x-21=0
=> x=21
b, => -32-x+5 = 0
=> -x-27 = 0
=> -x=27
=> x=-27
c, => 11+15-x = 1
=> 26-x=1
=> x = 26-1 = 25
Tk mk nha
-12 + (x -9)=0 -32 - (x -5)=0 11 + (15- x )= 1
x -9 =0 +12 x -5 =0-32 15 - x =1 - 11
x -9 =12 x -5 = -32 15 -x =-10
x = 12+9 x = ( -32)+5 x = 15 +10
x =2 x = -27 x =25
a: Khi x=25 thì \(A=\dfrac{5-2}{5-3}=\dfrac{3}{2}\)
b: P=A*B
\(=\dfrac{\sqrt{x}-2}{\sqrt{x}-3}\left(\dfrac{6x+6\sqrt{x}-12}{x+5\sqrt{x}+4}-\dfrac{5\sqrt{x}}{\sqrt{x}+4}\right)\)
\(=\dfrac{\sqrt{x}-2}{\sqrt{x}-3}\cdot\left(\dfrac{6x+6\sqrt{x}-12}{\left(\sqrt{x}+1\right)\left(\sqrt{x}+4\right)}-\dfrac{5\sqrt{x}}{\sqrt{x}+4}\right)\)
\(=\dfrac{\sqrt{x}-2}{\sqrt{x}-3}\cdot\dfrac{6x+6\sqrt{x}-12-5x-5\sqrt{x}}{\left(\sqrt{x}+4\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{x+\sqrt{x}-12}{\left(\sqrt{x}+4\right)\left(\sqrt{x}-3\right)}\cdot\dfrac{\sqrt{x}-2}{\sqrt{x}-1}=\dfrac{\sqrt{x}-2}{\sqrt{x}-1}\)
c: \(\sqrt{P}< =\dfrac{1}{2}\)
=>0<=P<=1/4
=>\(\left\{{}\begin{matrix}P>=0\\P-\dfrac{1}{4}< =0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{\sqrt{x}-2}{\sqrt{x}-1}>=0\\\dfrac{\sqrt{x}-2}{\sqrt{x}-1}-\dfrac{1}{4}< =0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\left[{}\begin{matrix}x>=4\\0< =x< 1\end{matrix}\right.\\\dfrac{4\left(\sqrt{x}-2\right)-\sqrt{x}+1}{4\left(\sqrt{x}-1\right)}< =0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\left[{}\begin{matrix}x>=4\\0< =x< 1\end{matrix}\right.\\\dfrac{3\sqrt{x}-7}{\sqrt{x}-1}< =0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x>=4\\0< =x< 1\end{matrix}\right.\\1< \sqrt{x}< =\dfrac{7}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x>=4\\0< =x< 1\end{matrix}\right.\\1< x< \dfrac{49}{9}\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}\left[{}\begin{matrix}x>=4\\0< =x< 1\end{matrix}\right.\\x=\dfrac{49}{9}\end{matrix}\right.\)
=>\(4< =x< =\dfrac{49}{9}\)
mà x nguyên
nên \(x\in\left\{4;5\right\}\)
x × 12 + x : 0,2 = 32
x × 12 + x × 5 = 32
x × ( 12 + 5 ) = 32
x × 17 = 32
x = 32 : 17
x = \(\frac{32}{17}\)( Bạn cũng có thể đổi ra số thập phân )
*** Bạn kết bạn và chọn đúng cho mình nha!
thanks bạn nha