Giả sử \(x=\frac{a}{m}\) , \(y=\frac{b}{m}\) ( a, b, m thuộc Z, m>0) và x<y . Hãy chứng tỏ rằng nếu chọn \(z=\frac{a+b}{2m}\) thì ta có x<z<y
(sgk lớp 7 trang 8 bài tập số 5 )
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì x<y nên :
# \(\frac{a}{m}< \frac{b}{m}\) #\(\frac{a}{m}< \frac{b}{m}\)
\(\frac{a}{m}+\frac{a}{m}< \frac{b}{m}+\frac{a}{m}\) \(\frac{a}{m}+\frac{b}{m}< \frac{b}{m}+\frac{b}{m}\)
\(\frac{2a}{m}< \frac{a+b}{m}\) \(\frac{a+b}{m}< \frac{2b}{m}\)
\(\frac{2a}{2m}< \frac{a+b}{2m}\) \(\frac{a+b}{2m}< \frac{2b}{2m}\)
\(\frac{a}{m}< \frac{a+b}{2m}\) \(\frac{a+b}{2m}< \frac{b}{m}\)
=> x < z ( 1 ) => z < y ( 2)
TỪ (1) VÀ (2) TA SUY RA X < Z < Y
( Nếu có chỗ nào bạn ko hỉu thì ib cho mik nha mk sẽ chỉ bn ha ) ( ý mà nhớ là ..... ( ai cx muốn hì....hì...) )
Ta có x = \(\frac{2a}{2m}\)< \(\frac{a+b}{2m}\)= z
y = \(\frac{2b}{2m}\)> \(\frac{a+b}{2m}\)= z
Do x < y => a/m < b/m
=> a/m + a/m < a/m + b/m < b/m + b/m
=> 2x < a+b/m < 2y
=> x < a+b/m : 2 < 2y
=> x < a+b/m . 1/2 < y
=> x < a+b/2m < y
Chứng tỏ ...
Theo đề bài ta có x = a/m, y = b/m (a, b, m ∈ Z, b # 0)
Vì x < y nên ta suy ra a < b
Ta có: x = 2a/2m, y = 2b/2m; z = (a+b)/2m
Vì a < b => a + a < a + b => 2a < a + b
Do 2a < a + b nên x < z (1)
Vì a < b => a + b < b + b => a + b < 2b
Do a + b < 2b nên z < y (2)
Từ (1) và (2) ta suy ra x < z < y
Theo đề bài ta có x = a/m, y = b/m (a, b, m ∈ Z, b # 0)
Vì x < y nên ta suy ra a < b
Ta có: x = 2a/2m, y = 2b/2m; z = (a+b)/2m
Vì a < b => a + a < a + b => 2a < a + b
Do 2a < a + b nên x < z (1)
Vì a < b => a + b < b + b => a + b < 2b
Do a + b < 2b nên z < y (2)
Từ (1) và (2) ta suy ra x < z < y
x=a/m; y=b/m; x<y suy ra a/m<b/m suy ra a<b
suy ra a+a<a+b suy ra 2a<a+b suy ra 2a/m<a+b/m suy ra 2a/2m<a+b/2m
Hay x<z
Tương tự ta có z<y
Nên x<z<y
Ta có x < y ; m > 0
=> \(\frac{a}{m}< \frac{b}{m}\)
=> a < b (vì m > 0)
Lại có x = \(\frac{a}{m}=\frac{2a}{2m}=\frac{a+a}{2m}< \frac{a+b}{2m}=y\)(vì a < b nên a + a < a + b)
=> x < z (1)
Mặt khác \(y=\frac{b}{m}=\frac{2b}{2m}=\frac{b+b}{2m}>\frac{a+b}{2m}=z\)(vì b > a nên b +b > b + a)
=> y > z (2)
Từ (1) và (2) => x < z < y (đpcm)
bn tham khảo ở đây: Câu hỏi của Trần Khởi My - Toán lớp 7 - Học toán với OnlineMath
ok mk nha ^^ !!!!! 536456457567568768768456457655676876234253453453453453465576
Theo đề bài ta có x = \(\frac{a}{m}\) , y = \(\frac{b}{m}\)( a, b, m \(\in\) Z, m > 0 )
Vì x < y nên ta suy ra a < b
Ta có : x = \(\frac{2a}{2m}\), y = \(\frac{2b}{2m}\), , z = \(\frac{a+b}{2m}\)
Vì a < b => a + a < a +b => 2a < a + b
Do 2a< a +b nên x < z (1)
Vì a < b => a + b < b + b => a + b < 2b
Do a+b < 2b nên z < y (2)
Từ (1) và (2) ta suy ra x < z< y
Ta có x < y
=> x + x < y + x
=> \(\frac{2a}{m}<\frac{a+b}{m}\)
=> 2a < a + b
Mà x = \(\frac{a}{m}\)=\(\frac{2a}{2m}\)
y = \(\frac{b}{m}\)= \(\frac{2b}{2m}\)
Theo giả thuyết trên
=> 2a < a + b < 2b
=> \(\frac{2a}{2m}<\frac{a+b}{2m}<\frac{2b}{2m}\)
=> x < z < y (Đpcm)
ta có : x < y hay a/m < b/m => a < b.
So sánh x, y, z ta chuyển chúng cùng mẫu : 2m
x = a/m = 2a/ 2m và y = b/m = 2b/2m và z = (a + b) / 2m
mà : a < b
suy ra : a + a < b + a
hay 2a < a + b
suy ra x < z (1)
mà : a < b
suy ra : a + b < b + b
hay a + b < 2b
suy ra z < y (2)