Cho a>=2 .Tìm GTNN của biểu thức \(S=a+\frac{1}{a^2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=\left(a^2+b^2+c^2+\frac{1}{8a}+\frac{1}{8b}+\frac{1}{8c}+\frac{1}{8a}+\frac{1}{8b}+\frac{1}{8c}\right)+\frac{3}{4a}+\frac{3}{4b}+\frac{3}{4c}\)
\(\ge9\sqrt[9]{a^2b^2c^2.\frac{1}{8a}.\frac{1}{8b}.\frac{1}{8c}.\frac{1}{8a}.\frac{1}{8b}.\frac{1}{8c}}+\frac{3}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
\(\ge\frac{9}{4}+9.\frac{1}{\sqrt[3]{abc}}\ge\frac{9}{4}+\frac{9}{4}.\frac{1}{\frac{a+b+c}{3}}\ge\frac{9}{4}+\frac{9}{4}.2=\frac{27}{4}\)
Dấu " = " xảy ra \(\Leftrightarrow a=b=c=\frac{1}{2}\)
Vậy \(Min_S=\frac{27}{4}\)
Ta sẽ áp dụng Côsi cho 3 số:xa+xa+1/a2
Dự đoán "=" xảy ra <=> a=2 và xa=1/a2
=> x=1/8
khi đó ta có
S= a+1/a2 =(a/8+a/8+1/a2) +6a/8 >= 3 căn bậc 3 của( a/8. a/8. 1/a2) +(6×2)/8=9/4
VậyMinS=9/4 đặt đc khi a=2
2) \(S=a+\frac{1}{a}=\frac{15a}{16}+\left(\frac{a}{16}+\frac{1}{a}\right)\)
Áp dụng BĐT AM-GM ta có:
\(S\ge\frac{15a}{16}+2.\sqrt{\frac{a}{16}.\frac{1}{a}}=\frac{15.4}{16}+2.\sqrt{\frac{1}{16}}=\frac{15}{4}+2.\frac{1}{4}=\frac{15}{4}+\frac{1}{2}=\frac{15}{4}+\frac{2}{4}=\frac{17}{4}\)
\(S=\frac{17}{4}\Leftrightarrow a=4\)
Vậy \(S_{min}=\frac{17}{4}\Leftrightarrow a=4\)
kudo shinichi sao cách làm giống của thầy Hồng Trí Quang vậy bạn?
\(S=a+\frac{1}{a}=\frac{15}{16}a+\left(\frac{a}{16}+\frac{1}{a}\right)\ge\frac{15}{16}a+2\sqrt{\frac{1.a}{16.a}}=\frac{15}{16}a+2.\frac{1}{4}\)
\(=\frac{15}{16}.4+\frac{1}{2}=\frac{17}{4}\Leftrightarrow a=4\)
Dấu "=" xảy ra khi a = 4
Vậy \(S_{min}=\frac{17}{4}\Leftrightarrow a=4\)
S = a+b+c + (1/a + 1/b + 1/c)
>= (a+b+c) + 9/a+b+c
= [ (a+b+c) + 9/4.(a+b+c) ] + 27/4.(a+b+c)
>= \(2\sqrt{\left(a+b+c\right).\frac{9}{4.\left(a+b+c\right)}}\) + 27/(4.3/2)
= 3 + 9/2
= 15/2
Dấu "=" xảy ra <=> a=b=c=1/2
Vậy ......
Tk mk nha
2a² + b²/4 + 1/a² = 4
⇔ 8a⁴ + a²b² + 4 = 16a²
⇔ a²b² = -8a⁴ + 16a² - 4
⇔ a²b² = -8(a⁴ - 2a² + 1) + 4
⇔ a²b² = -8(a² - 1)² + 4 ≤ 4
⇔ │ab│ ≤ 2
⇔ -2 ≤ ab ≤ 2
--> A = ab + 2011 ≥ 2009
Dấu " = " xảy ra ⇔
{ a² - 1 = 0 . . . --> { a = 1 . . . . . { a = -1
{ ab = -2 . . . . . . . { b = -2 hoặc .{ b = 2
ta có:
\(S=\frac{a}{a^2+1}+\frac{5\left(a^2+1\right)}{2a}=\frac{a}{a^2+1}+\frac{a^2+1}{4a}+\frac{9\left(a^2+1\right)}{4a}\)
áp dụng bất đẳng thức Cauchy ta có:
\(\frac{a}{a^2+1}+\frac{a^2+1}{4a}\ge2\sqrt{\frac{a}{a^2+1}.\frac{a^2+1}{4a}}=2.\sqrt{\frac{1}{4}}=1\)
\(\frac{9\left(a^2+1\right)}{4a}\ge\frac{9.2a}{4a}=\frac{9}{2}\)
\(\Rightarrow S\ge\frac{9}{2}+1=\frac{11}{2}\)
Vậy \(Min_S=\frac{11}{2}\)khi a=1
bạn ơi tại sao lại là \(\frac{9\left(a^2+1\right)}{4a}=\frac{9.2a}{4a}\)
Áp dụng bất đẳng thức Cosi ta có :
\(4\ge a+b\ge2\sqrt{ab}\Leftrightarrow\sqrt{ab}\le2\Leftrightarrow ab\le4\)
Ta có bất đẳng thức \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)
(Nhân chéo để chứng minh )
Áp dụng :
\(S=\frac{1}{a^2+b^2}+\frac{25}{ab}+ab=\frac{1}{a^2+b^2}+\frac{1}{2ab}+\frac{49}{2ab}+ab\)
\(=\frac{1}{a^2+b^2}+\frac{1}{2ab}+ab+\frac{16}{ab}+\frac{17}{2ab}\)
\(\ge\frac{4}{a^2+b^2+2ab}+2\sqrt{ab.\frac{16}{ab}}+\frac{17}{2ab}\)
\(\ge\frac{4}{\left(a+b\right)^2}+8+\frac{17}{2.4}=\frac{1}{4}+8+\frac{17}{8}=\frac{83}{8}\)
Dấu " = " xảy ra \(\Leftrightarrow a=b=2\)
\(S=\frac{a}{a^2+1}+\frac{5\left(a^2+1\right)}{2a}=\frac{a}{a^2+1}+\frac{10\left(a^2+1\right)}{4a}\)
\(S=\frac{a}{a^2+1}+\frac{a^2+1}{4a}+\frac{9\left(a^2+1\right)}{4a}\)
Vì \(a>0\)nên áp dụng bất dẳng thức Cô-si cho 2 số dương, ta được:
\(\frac{a}{a^2+1}+\frac{a^2+1}{4a}\ge2\sqrt{\frac{a\left(a^2+1\right)}{4\left(a^2+1\right)a}}=2\sqrt{\frac{1}{4}}=2.\frac{1}{2}=1\left(1\right)\)
Vì \(a>0\)nên áp dụng bất đẳng thức Cô-si cho 2 số dương, ta được:
\(a^2+1\ge2a\)
\(\Leftrightarrow9\left(a^2+1\right)\ge9.2a=18a\)
\(\Leftrightarrow\frac{9\left(a^2+1\right)}{4a}\ge\frac{18a}{4a}=\frac{9}{2}\left(2\right)\)(vì \(a>0\))
Từ (1) và (2), ta được:
\(\frac{a}{a^2+1}+\frac{a^2+1}{4a}+\frac{9\left(a^2+1\right)}{4a}\ge1+\frac{9}{2}\)
\(\Leftrightarrow S\ge\frac{11}{2}\)
Dấu bằng xảy ra
\(\Leftrightarrow\orbr{\begin{cases}\frac{a}{a^2+1}=\frac{a^2+1}{4a}\\a^2=1\end{cases}}\Leftrightarrow a=1\)(thỏa mãn \(a>0\))
Vậy \(minS=\frac{11}{2}\Leftrightarrow a=1\)
\(S=\frac{1}{a^2+b^2}+\frac{25}{ab}+ab\)
\(=\left(\frac{1}{a^2+b^2}+\frac{1}{2ab}\right)+\left(ab+\frac{16}{ab}\right)+\frac{17}{2ab}\)
\(\ge\frac{4}{\left(a+b\right)^2}+2\sqrt{ab\cdot\frac{16}{ab}}+\frac{17}{\frac{\left(a+b\right)^2}{2}}\)
\(\ge\frac{4}{4^2}+8+\frac{17}{\frac{4^2}{2}}=\frac{83}{8}\)
Dấu "=" xảy râ khi x = y = 2
Ta có \(a+b\ge2\sqrt{ab}\)=> \(ab\le4\)
\(\frac{1}{a^2+b^2}+\frac{1}{2ab}\ge\frac{4}{\left(a+b\right)^2}\ge\frac{1}{4}\)
\(\frac{16}{ab}+ab\ge8\)
\(\frac{17}{2ab}\ge\frac{17}{8}\)
=> \(S\ge8+\frac{17}{8}+\frac{1}{4}=\frac{83}{8}\)
Vậy MinS=83/8 khi a=b=2
Sorry.Because I am thirty years old
vc 30 tuổi mà ko bik làm