Tìm số nguyên dương x,y với x>y biết:
2x+1 chia hết cho y và 2y+1 chia hết cho x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để 199x chia hết cho 11 thì (1 + 9) - (9 + x) chia hết cho 11
=> 10 - (9 + x) chia hết cho 11
=> x = 1
Giải:
Để 199x chia hết cho 11 thì (1 + 9) - (9 + x) chia hết cho 11.
=> 10 - (9 + x) chia hết cho 11.
=> x = 1
a) \(x\left(x^2-2x\right)+\left(x-2x\right)=x^2\left(x-2\right)+x\left(x-2\right)=\left(x-2\right)\left(x^2+x\right)⋮x-2\forall x,y\in Z\)
b) \(x^3y^2-3yx^2+xy=xy\left(x^2y-3x+1\right)⋮xy\forall x,y\in Z\)
c) \(x^3y^2-3x^2y^3+xy^2=xy^2\left(x^2-3xy+1\right)⋮\left(x^2-3xy+1\right)\forall x,y\in Z\)
Bài 1: y=0; x=2
Bài 2: y=0; \(x\in\left\{0;2;4;6;8\right\}\)
Bài 1:
Để số 1996xy chia hết cho 2 và 5 thì y=0
Để số 1996xy chia hết cho 9 thì: 1+9+9+6+x+0=25+x phải là 1 số chia hết cho 9
Vậy x=2
Bài 2:
Để số 38xy chia hết cho cả 2 và 5 thì y=0
Để số 38xy chia hết cho 4 thì; 3+8+x+0=11+x phải là số chia hết cho 4
Vậy x=1 hoặc 5
1. Ta có \(\left(b-a\right)\left(b+a\right)=p^2\)
Mà b+a>b-a ; p là số nguyên tố
=> \(\hept{\begin{cases}b+a=p^2\\b-a=1\end{cases}}\)
=> \(\hept{\begin{cases}b=\frac{p^2+1}{2}\\a=\frac{p^2-1}{2}\end{cases}}\)
Nhận xét :+Số chính phương chia 8 luôn dư 0 hoặc 1 hoặc 4
Mà p là số nguyên tố
=> \(p^2\)chia 8 dư 1
=> \(\frac{p^2-1}{2}⋮4\)=> \(a⋮4\)(1)
+Số chính phương chia 3 luôn dư 0 hoặc 1
Mà p là số nguyên tố lớn hơn 3
=> \(p^2\)chia 3 dư 1
=> \(\frac{p^2-1}{2}⋮3\)=> \(a⋮3\)(2)
Từ (1);(2)=> \(a⋮12\)
Ta có \(2\left(p+a+1\right)=2\left(p+\frac{p^2-1}{2}+1\right)=p^2+1+2p=\left(p+1\right)^2\)là số chính phương(ĐPCM)
a, 17x3y chia hết cho 15 => 17x3y chia hết cho 5
TH1: y=0 => Các số chia hết 15: 17130, 17430, 17730 => x=1 hoặc x=4 hoặc x=7
TH2: y=5 => Các số chia hết cho 15: 17235, 17535, 17835 => x=2 hoặc x=5 hoặc x=8
Vậy: Các cặp số (x;y) thoả mãn: (x;y)= {(1;0); (4;0); (7;0); (2;5); (5;5); (8;5)}
34x5y chia hết cho 36 => 34x5y là số chẵn và chia hết cho 3, chia hết cho 9
TH1: y=0 => Các số chia hết cho 36: Không có số thoả
TH2: y=2 => Các số chia hết cho 36: 34452 => x=4
TH3: y=4 => Các số chia hết cho 36: Không có số thoả
TH4: y=6 => Các số chia hết cho 36: 34056; 34956 => x=0 hoặc x=9
TH5: y=8 => Các số chia hết cho 36: Không có số thoả
=> Các số chia hết cho 36 tìm được: 34452; 34056 và 34956
Vậy: (x;y)={(4;2); (0;6); (9;6)}
Ta có: 2x + 1 chia hết cho y và 2y + 1 chia hết cho x
=> 2x + 1 chia hết x và 2y + 1 chia hết y
=> x = y = 1
Ta có: 2x + 1 chia hết cho y và 2y + 1 chia hết cho x
=> 2x + 1 chia hết x và 2y + 1 chia hết y
=> x = y = 1