Bình Dương 2016-2017
Cho phương trình \(x^2-\left(5m-1\right)x+6m^2-2m=0\) (m là tham số)
- Chứng minh rằng phương trình luôn có nghiệm với mọi giá trị của m
- Gọi \(x_1,x_2\) là hai nghiệm của phương trình . Tìm m để \(x_1^2+x_2^2=1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(\Delta=m^2-4\left(-4\right)=m^2+16\)> 0
Vậy pt luôn có 2 nghiệm pb
b, Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=-4\end{matrix}\right.\)
Ta có \(\left(x_1+x_2\right)^2-2x_1x_2=5\)
Thay vào ta được \(m^2-2\left(-4\right)=5\Leftrightarrow m^2+3=0\left(voli\right)\)
Bạn ơi, mình có thể hỏi câu c được không ạ? Nếu không được thì không sao, mình cảm ơn câu trả lời của bạn ạ ^-^ chúc bạn một ngày tốt lành nhé.
1,
Thay m=4 phuong trình đã cho trở thành : \(x^2-9x+20=0\)
\(\Delta=81-80=1\) \(>0\) nên phương trình đã cho có hai nghiệm phân biệt \(x_1=5\) và \(x_2=4\).
2,
Ta có \(\Delta=\left(2m+1\right)^2-4\left(m^2+m\right)=1>0\) với mọi \(m\) nên phuong trình đã cho có hai nghiệm phân biệt
\(x_1,x_2\) với mọi \(m.\)
Áp dụng định lý Vi-et : \(\hept{\begin{cases}x_1+x_2=2m+1\\x_1x_2=m^2+m\end{cases}}\)
\(\Rightarrow x_1^2+x_2^2-5x_1x_2=-17\) \(\Leftrightarrow\left(x_1+x_2\right)^2-7x_1x=-17\Leftrightarrow\left(2m+1\right)^2-7\left(m^2+m\right)=-17\Leftrightarrow m^2+m-6=0\)
\(\Rightarrow\hept{\begin{cases}m=-3\\m=2\end{cases}}\)
a,\(\Delta=\left[-\left(2m+3\right)\right]^2-4m=4m^2+12m+9-4m=4m^2+8m+9\)\(=\)\(4\left(m^2+2m+\dfrac{9}{4}\right)=4\left(m+1\right)^2+5\ge5>0\)
=>pt luôn có 2 nghiệm phân biệt
b,vi ét \(=>\left\{{}\begin{matrix}x1+x2=2m+3\\x1x2=m\end{matrix}\right.\)
\(T=\left(x1+x2\right)^2-2x1x2=\left(2m+3\right)^2-2m=4m^2+12m+9-2m\)\(=4m^2+10m+9=4\left(m^2+\dfrac{10}{4}m+\dfrac{9}{4}\right)=4\left[\left(m+\dfrac{5}{4}\right)^2+\dfrac{11}{16}\right]\)\(=4\left(m+\dfrac{5}{4}\right)^2+\dfrac{11}{4}\ge\dfrac{11}{4}\)
dấu"=" xảy ra<=>m=-5/4
\(\Delta'=\left(m-3\right)^2-\left(-6m-7\right)=m^2+16>0\)
Vậy pt có 2 nghiệm pb
Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-3\right)\\x_1x_2=-6m-7\end{matrix}\right.\)
\(C=4\left(m-3\right)^2+8\left(-6m-7\right)\)
\(=4m^2-24m+36-48m-56=4m^2-72m-20\)
\(=4\left(m^2-18m+81-81\right)-20=4\left(m-9\right)^2-344\ge-344\)
Dấu ''='' xảy ra khi m = 9
a, Khi m=2, phương trình trở thành:
\(2x^2-5x+2=0\)
\(\Leftrightarrow\left(2x-1\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=2\end{matrix}\right.\)
Vậy với m=2, phương trình có nghiệm \(x=\dfrac{1}{2};x=2\)
b, \(\Delta=\left(m+3\right)^2-8m=m^2-2m+9=\left(m-1\right)^2+8>0,\forall m\)
\(\Rightarrow\) Phương trình đã cho có nghiệm với mọi m
Theo định lí Vi-et: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{m+3}{2}\\x_1x_2=\dfrac{m}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_1^2+x_2^2+2x_1x_2=\dfrac{m^2+6m+9}{4}\\4x_1x_2=2m\end{matrix}\right.\)
\(\Rightarrow\left(x_1-x_2\right)^2=\dfrac{m^2-2m+9}{4}\)
\(\Rightarrow A=\left|x_1-x_2\right|=\dfrac{\sqrt{m^2-2m+9}}{2}=\dfrac{\sqrt{\left(m-1\right)^2+8}}{2}\ge\sqrt{2}\)
\(\Rightarrow minA=\sqrt{2}\Leftrightarrow m=1\)
pt: \(2x^2-\left(m+3\right)x+m=0\left(1\right)\)
a, khi m=2 ta có: \(2x^2-5x+2=0\)(2)
\(\Delta=\left(-5\right)^2-4.2.2=9>0\)
vậy pt(2) có 2 nghiệm phan biệt \(x3=\dfrac{5+\sqrt{9}}{2.2}=2\)
\(x4=\dfrac{5-\sqrt{9}}{2.2}=0,5\)
b,từ pt(1) có \(\Delta=\left[-\left(m+3\right)\right]^2-4m.2=m^2+6m+9-8m\)
\(=m^2-2m+9=\left(m-1\right)^2+8>0\left(\forall m\right)\)
vậy \(\forall m\) pt(1) luôn có 2 nghiệm phân biệt x1,x2
điều kiện để pt(1) có 2 nghiệm phân biệt không âm khi
\(\left\{{}\begin{matrix}\Delta>0\\S>0\\P>0\end{matrix}\right.< =>\left\{{}\begin{matrix}\Delta>0\left(cmt\right)\\x1+x2>0\\x1.x2>0\end{matrix}\right.< =>\left\{{}\begin{matrix}\dfrac{m+3}{2}>0\\\dfrac{m}{2} >0\end{matrix}\right.\)\(< =>\left\{{}\begin{matrix}m>-3\\m>0\end{matrix}\right.\)
\(< =>m>0\)
theo vi ét =>\(\left\{{}\begin{matrix}x1+x2=\dfrac{m+3}{2}\\x1.x2=\dfrac{m}{2}\end{matrix}\right.\)
\(=>A=\left|x1-x2\right|\)
\(=>A=\sqrt{\left(x1-x2\right)^2}=\sqrt{\left(x1+x2\right)^2-4x1x2}\)
\(A=\sqrt{\left(\dfrac{m+3}{2}\right)^2-4\dfrac{m}{2}}=\sqrt{\dfrac{m^2+6m+9-8m}{4}}\)
\(A=\sqrt{\dfrac{\left(m-1\right)^2+8}{4}}=\dfrac{1}{2}\sqrt{\left(m-1\right)^2+8}\)\(\ge\sqrt{2}\)=>Min A=\(\sqrt{2}\)
dấu = xảy ra <=>m=1(TM)
a, \(x^2-4x+3=0\Leftrightarrow x^2-x-3x+3=0\)
\(\Leftrightarrow x\left(x-1\right)-3\left(x-1\right)=0\Leftrightarrow\left(x-3\right)\left(x-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=3\\x=1\end{cases}}\)
Vậy tập nghiệm của phương trình là S = { 1 ; 3 }
b, Ta có : \(\Delta=\left(2m+2\right)^2-4\left(2m-5\right)=4m^2+8m+4-8m+20=4m^2+24>0\forall m\)
Theo Vi et ta có : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=2m-2\\x_1x_2=\frac{c}{a}=2m-5\end{cases}}\)
Ta có : \(\left(x_1^2-2mx_1-x_2+2m-3\right)\left(x_2^2-2mx_2-x_1+2m-3\right)=19.1=1.19\)
TH1 : \(\hept{\begin{cases}x_1^2-2mx_1-x_2+2m-3=19\\x_2^2-2mx_2-x_1+2m-3=1\end{cases}}\)
Lấy phương trình (1) + (2) ta được :
\(x_1^2+x_2^2-2mx_1-2mx_2-x_2-x_1+4m-6=20\)
mà \(\left(x_1+x_2\right)^2=4m^2+8m+4\Rightarrow x_1^2+x_2^2=4m^2+8m+4-2x_1x_2\)
\(=4m^2+8m+4-2\left(2m-5\right)=4m^2+4m-6\)
\(\Leftrightarrow4m^2+4m-6-2m\left(2m-2\right)-\left(2m-2\right)+4m-6=20\)
\(\Leftrightarrow4m^2+4m-6-4m^2+4m-2m+2+4m-6=20\)
\(\Leftrightarrow10m=30\Leftrightarrow m=3\)tương tự với TH2, nhưng em ko chắc lắm vì dạng này em chưa làm bao giờ
a) Tam thức bậc hai có \(\Delta'=m^2-m+4=m^2-2.\frac{1}{2}m+\frac{1}{4}-\frac{1}{4}+4=\left(m-\frac{1}{2}\right)^2+\frac{15}{4}>0\).
Suy ra phương trình (1) luôn có nghiệm với mọi m.
b) Theo Vi-et ta có:
\(x_1+x_2=2m,x_1.x_2=m-4\)
Điều kiển để \(x_1+x_2=\frac{x_1^2}{x_2}+\frac{x_2^2}{x_1}\)
\(\Leftrightarrow x_1+x_2=\frac{x_1^3+x_2^3}{x_1x_2}\)
\(\Leftrightarrow x_1+x_2=\frac{\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)}{x_1x_2}\)
\(\Leftrightarrow2m=\frac{\left(2m\right)^3-3\left(m-4\right).2m}{m-4}\)
\(\Leftrightarrow2m\left(m-4\right)=8m^3-6m^2+8m\) và \(m\ne4\)
\(\Leftrightarrow4m\left(2m^2-2m+3\right)=0\) và \(m\ne4\)
\(\Leftrightarrow m=0\)