K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 4 2015

Gọi biểu thức trên là A, ta có :

A = 1x2 + 2x3 + 3x4 + 4x5 + ...+ 99x100

A x 3 = 1x2x3 + 2x3x3 + 3x4x3 + 4x5x3 + ... + 99x100x3

A x 3 = 1x2x3 + 2x3x(4-1) + 3x4x(5-2) + 4x5x(6-3) + ... + 99x100x(101-98)

A x 3 = 1x2x3 + 2x3x4 - 1x2x3 + 3x4x5 - 2x3x4 + 4x5x6 - 3x4x5 + ... + 99x100x101 - 98x99x100.

A x 3 = 99x100x101

A = 99x100x101 : 3

 

A = 333300

11 tháng 1 2016

Gọi biểu thức trên là S, ta có :

S = 1x2 + 2x3 + 3x4 + 4x5 + ...+ 99x100

S x 3 = 1x2x3 + 2x3x3 + 3x4x3 + 4x5x3 + ... + 99x100x3

S x 3 = 1x2x3 + 2x3x(4-1) + 3x4x(5-2) + 4x5x(6-3) + ... + 99x100x(101-98)

S x 3 = 1x2x3 + 2x3x4 - 1x2x3 + 3x4x5 - 2x3x4 + 4x5x6 - 3x4x5 + ... + 99x100x101 - 98x99x100.

S x 3 = 99x100x101

S = 99x100x101 : 3

S = 333300

 

10 tháng 11 2017

A = 1x2 + 2x3 + 3x4 + 4x5 + ...+ 99x100

A x 3 = 1x2x3 + 2x3x3 + 3x4x3 + 4x5x3 + ... + 99x100x3 A x 3 = 1x2x3 + 2x3x(4-1) + 3x4x(5-2) + 4x5x(6-3) + ... + 99x100x(101-98) ..................................

A x 3 = 99x100x101 A = 333300

2 tháng 3 2018

A = 1x2 + 2x3 + 3x4 + 4x5 + ...+ 99x100
A x 3 = 1x2x3 + 2x3x3 + 3x4x3 + 4x5x3 + ... + 99x100x3
A x 3 = 1x2x3 + 2x3x(4-1) + 3x4x(5-2) + 4x5x(6-3) + ... + 99x100x(101-98)
..................................
A x 3 = 99x100x101
A = 333300

12 tháng 4 2016

S = 1/100

17 tháng 6 2023

\(\times\) 2 \(\times\) 3 = 1  \(\times\) 2 \(\times\) 3

\(\times\) 3 \(\times\) 3 = 2 \(\times\) 3 \(\times\) ( 4 -1) = 2  \(\times\) 3 \(\times\) 4 - 1 \(\times\) 2 \(\times\) 3

\(\times\) 4 \(\times\) 3 = 3 \(\times\) 4 \(\times\) ( 5 -2) = 3 \(\times\) 4 \(\times\) 5 - 2 \(\times\) 3 \(\times\) 4

\(\times\) 5 \(\times\) 3 = 4 \(\times\) 5 \(\times\) ( 6- 3) = 4 \(\times\) 5 \(\times\) 6 - 3 \(\times\) 4 \(\times\) 5 

..................................................................................

99\(\times\)100\(\times\)3 = 99\(\times\)100\(\times\)(101-98) =99\(\times\)100\(\times\)101 - 98\(\times\)99\(\times\)100

Cộng vế với vế ta được:

1\(\times\)2\(\times\)3 + 2\(\times\)3\(\times\)3 + 3\(\times\)4\(\times\)3+ ...+99\(\times\)100\(\times\)3 = 99\(\times\)100\(\times\)101

(1\(\times\)2 + 2\(\times\)3 + 3\(\times\)4 +...+99\(\times\)100)\(\times\)3 = 99\(\times\)100\(\times\)101

1\(\times\)2 + 2\(\times\)3 + 3\(\times\)4+...+99\(\times\)100 = (99 \(\times\)100 \(\times\)101):3

1\(\times\)2 + 2\(\times\)3 + 3\(\times\)4+...+99\(\times\)100 = 333 300

18 tháng 6 2023

cảm ơn cô

 

20 tháng 3 2019

A = 1x2 + 2x3 + 3x4 + 4x5 + ...+ 99x100

A x 3 = 1x2x3 + 2x3x3 + 3x4x3 + 4x5x3 + ... + 99x100x3

A x 3 = 1x2x3 + 2x3x(4-1) + 3x4x(5-2) + 4x5x(6-3) + ... + 99x100x(101-98)

A x 3 = 1x2x3 + 2x3x4 - 1x2x3 + 3x4x5 - 2x3x4 + 4x5x6 - 3x4x5 + ... + 99x100x101 - 98x99x100.

A x 3 = 99x100x101

A = 99x100x101 : 3

A = 333300

hok tốt

A=1x2+2x3+3x4+4x5+......+99x100+100x101

3A=1x2x(3-0)+2x3x(4-1)+3x4x(5-2)+4x5x(6-3)+...+99x100x(101-98)+100x101x(102-99)

3A=1x2x3-0x1x2+2x3x4-1x2x3+3x4x5-2x3x4+4x5x6-3x4x5+...+99x100x101-98x99x100+100x101x102-99x100x101

3A=(1x2x3+2x3x4+3x4x5+4x5x6+...+99x100x101+100x101x102)-(0x1x2+1x2x3+2x3x4+3x4x5+...+98x99x100+99x100x101)

3A=100x101x102

A=100x101x102:3

A=343400

17 tháng 6 2016

A = 1x2 + 2x3 + 3x4 + 4x5 + ... + 99x100 + 100x101

3A = 1x2x(3-0) + 2x3x(4-1) + 3x4x(5-2) + 4x5x(6-3) + ... + 99x100x(101-98) + 100x101x(102-99)

3A = 1x2x3 - 0x1x2 + 2x3x4 - 1x2x3 + 3x4x5 - 2x3x4 + 4x5x6 - 3x4x5 + ... + 99x100x101 - 98x99x100 + 100x101x102 - 99x100x101

3A = 100x101x102 - 0x1x2

3A = 100x101x102

A = 100x101x34

A = 343400

25 tháng 8 2015

=>3D =1.2.3 + 2.3.3 + 3.4.3 + ..... + 99.100 .3

=> 3D = 1.2.3 - 2.3. ( 4-1) + 3.4. (5-2) + ... + 98.99 (100 - 97 ) + 99 . 100 . ( 101-98)

=> 3D= 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 +... + 98.99.100 -97.98.99 +99.100.101-98.99.100

=> 3D= 99.100.101

=> 3D= 999 900 

D= 999 900 .3 = 333 300

11 tháng 8 2016

=>3D =1.2.3 + 2.3.3 + 3.4.3 + ..... + 99.100 .3

=> 3D = 1.2.3 - 2.3. ( 4-1) + 3.4. (5-2) + ... + 98.99 (100 - 97 ) + 99 . 100 . ( 101-98)

=> 3D= 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 +... + 98.99.100 -97.98.99 +99.100.101-98.99.100

=> 3D= 99.100.101

=> 3D= 999 900 

D= 999 900 .3 = 333 300

11 tháng 3 2017

A=2(\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\))=2(\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\))

=> A=2(\(\frac{1}{1}-\frac{1}{100}\))=2.\(\frac{99}{100}=\frac{99}{50}\)

ĐS: A=99/50

\(\frac{2}{1\times2}+\frac{2}{2\times3}+\frac{2}{3\times4}+\frac{2}{4\times5}+...+\frac{2}{99\times100}\)

\(=\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+\frac{1}{4\times5}+...+\frac{1}{99\times100}\)

\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\)

\(=\frac{1}{1}-\frac{1}{100}\)

\(=\frac{99}{100}\)