1/2+1/6+1/12+...+1/90
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+...+\dfrac{1}{90}\)
\(=\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{9.10}\)
\(=\left(1-\dfrac{1}{2}\right)+\left(\dfrac{1}{2}-\dfrac{1}{3}\right)+\left(\dfrac{1}{3}-\dfrac{1}{4}\right)+...+\left(\dfrac{1}{9}-\dfrac{1}{10}\right)\)
\(=\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{9}-\dfrac{1}{10}\right)\)
\(=\left(1-\dfrac{1}{10}\right)\)
\(=\left(\dfrac{10}{10}-\dfrac{1}{10}\right)\)
\(=\dfrac{9}{10}\)
Chúc bạn học tốt
\(B=\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+...+\dfrac{1}{90}\)
\(B=\dfrac{1}{1\times2}+\dfrac{1}{2\times3}+\dfrac{1}{3\times4}+...+\dfrac{1}{9\times10}\)
\(B=\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{9}-\dfrac{1}{10}\)
\(B=\dfrac{1}{1}-\dfrac{1}{10}\)
\(B=\dfrac{9}{10}\)
1/2+1/6+1/12+...+1/90=1/(1.2)+1/(2.3)+1/(3.4)+...+1/(9.10)
=1/1-1/2+1/2-1/3+1/3-1/4+...+1/9-1/10
=1-1/10
=9/10
\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+..+\frac{1}{90}=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}=1-\frac{1}{10}=\frac{9}{10}\)
dấu "." là nhân nhé
\(A=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{90}\)
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{10}\)
\(A=1-\frac{1}{10}\)
\(A=\frac{9}{10}\)
1/2+1/6+1/12+1/20+...+1/90
=1/1.2+1/2.3+1/3.4+...+1/9.10
=1-1/2+1/2-1/3+1/3-1/4+...+1/9-1/10
=1-1/10
=9/10
= 1/1.2 + 1/2.3 + 1/3.4 + 1/4.5 + ... 1/9.10
= 1 - 1/10
= 9/10
Bạn xem lại chỗ 1/10
A = 1/1.2 + 1/2.3 + 1/3.4 + ....+1/9.10
A = 1-1/2 + 1/2 - 1/3 + 1/3 -...-1/10
A = 1 - 1/10
A = 9/10
=> (1/1.2 + 1/2.3 + 1/3.4 + ... + 1/8.9 + 1/9.10) : x = 9/20
=> (1/1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/8 - 1/9 + 1/9 - 1/10) : x = 9/20
=> (1 - 1/10) : x = 9/20
=> 9/10 : x = 9/20
X = 9/10 : 9/20 = 2
\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{90}\)
\(=\frac{1}{1x2}+\frac{1}{2x3}+\frac{1}{3x4}+...+\frac{1}{9x10}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)
\(=1-\frac{1}{10}\)
\(=\frac{9}{10}\)
\(\frac{1}{1.2}\)\(+\frac{1}{2.3}\)\(+\frac{1}{3.4}\)\(+...+\frac{1}{9.10}\)
\(1-\frac{1}{2}\)\(+\frac{1}{2}\)\(-\frac{1}{3}\)\(+\frac{1}{3}\)\(-\frac{1}{4}\)\(+...+\frac{1}{9}\)\(-\frac{1}{10}\)
\(1-\frac{1}{10}\)\(=\frac{9}{10}\)