cho tam giác ABC vuông tại A có AD là phân giác trong. Chứng minh: \(\frac{\sqrt{2}}{AD}=\frac{1}{AB}+\frac{1}{AC}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt AB=b, AC=a,AD=d vậy ta CM : 1/c+1/b=\(\sqrt{2}\)/d
Từ D hạ DH vuông AC tại H và DM vuông AB tại M, dễ dàng CM được AHDM là hình vuông. => HD=DM=d.sin45 = \(\frac{d}{\sqrt{2}}\)
Ta có S(ABC) = S(ACD) + S(ABD)
<=> b.c/2 = HD.b/2 + DM.c/2 <=> bc = \(\frac{bd+cd}{\sqrt{2}}\)<=> \(\sqrt{2}\)bc = bd + cd
Chia 2 vế cho b.c.d ta có pt cần CM
Ta có : SABC=SDAB+SDAC
12AB.AC=12AB.AD.sin45o+12AC.AD.sin45o=12AD.sin45o(AB+AC)
a/ \(S_{ABD}=\frac{1}{2}AB.AD.sin\widehat{BAD}=AB.AD.\frac{\sqrt{2}}{4}\)
\(S_{ACD}=\frac{1}{2}AC.AD.sin\widehat{CAD}=AC.AD.\frac{\sqrt{2}}{4}\)
\(S_{ABC}=\frac{1}{2}AB.AC\)
Suy ra : \(S_{ABC}=S_{ABD}+S_{ACD}\Leftrightarrow\frac{1}{2}AB.AC=\frac{\sqrt{2}}{4}AD.\left(AB+AC\right)\Rightarrow\frac{1}{AB}+\frac{1}{AC}=\frac{\sqrt{2}}{AD}\)
b/ Tương tự
1) Gọi AE là tia phân giác góc ngoài của tam giác tại A (E thuộc BC)
Ta có : \(S_{ABC}=\frac{1}{2}AB.AC=S_{ABD}+S_{ACĐ}=\frac{1}{2}AB.AD.sin45+\frac{1}{2}AC.AD.sin45\)
\(\Rightarrow AB.AC=\frac{\sqrt{2}}{2}\left(AB+AC\right).AD\Rightarrow\frac{\sqrt{2}}{AD}=\frac{1}{AB}+\frac{1}{AC}\)
mk mới hoc lớp 6 thôi