K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 2 2022

\(P=\left(\dfrac{1}{x-1}-\dfrac{2x}{x^3-x^2+x-1}\right):\left(\dfrac{1-2x}{x+1}\right)\left(ĐKXĐ:x\ne0;x\ne\pm1\right)\)

\(=\left(\dfrac{1}{x-1}-\dfrac{2x}{x^2\left(x-1\right)+\left(x-1\right)}\right):\left(\dfrac{1-2x}{x+1}\right)\)

\(=\left(\dfrac{1}{x-1}-\dfrac{2x}{\left(x-1\right)\left(x^2+1\right)}\right):\left(\dfrac{1-2x}{x+1}\right)\)

\(=\left(\dfrac{x^2+1-2x}{\left(x-1\right)\left(x^2+1\right)}\right):\left(\dfrac{1-2x}{x+1}\right)\)

\(=\dfrac{\left(x-1\right)^2}{\left(x-1\right)\left(x^2+1\right)}:\dfrac{1-2x}{x+1}\)

\(=\dfrac{x-1}{x^2+1}:\dfrac{1-2x}{x+1}\)

\(=\dfrac{x-1}{x^2+1}.\dfrac{x+1}{1-2x}\)

\(=\dfrac{x^2-1}{\left(x^2+1\right)\left(1-2x\right)}\)

a: \(M=\left(\dfrac{\left(x-1\right)\left(x+1\right)}{2\left(x-1\right)\left(x+1\right)}-\dfrac{\left(x+3\right)\left(x-1\right)}{2\left(x+1\right)\left(x-1\right)}\right):\dfrac{x-1-x+3}{x-1}\)

\(=\dfrac{x^2-1-x^2-2x+3}{2\left(x-1\right)\left(x+1\right)}\cdot\dfrac{x-1}{2}\)

\(=\dfrac{-2x+2}{2\left(x+1\right)}\cdot\dfrac{1}{2}=\dfrac{-x+1}{2}\)

b: Thay x=-1/2 vào M, ta được:

\(M=\dfrac{\dfrac{1}{2}+1}{2}=\dfrac{3}{2}:2=\dfrac{3}{4}\)

4 tháng 3 2022

a, \(M=\left(\dfrac{x^2-1-\left(x+3\right)\left(x-1\right)}{2\left(x-1\right)\left(x+1\right)}\right):\left(\dfrac{x-1-x+3}{x-1}\right)\)

\(=\left(\dfrac{-1+x-3x-3}{2\left(x-1\right)\left(x+1\right)}\right):\dfrac{2}{x-1}=\dfrac{-2x-4}{2\left(x-1\right)\left(x+1\right)}:\dfrac{2}{x-1}=\dfrac{-\left(x+2\right)}{2\left(x+1\right)}\)

b, Thay x  =-1/2 vào ta đc 

\(-\dfrac{\left(\dfrac{-1}{2}+2\right)}{2\left(-\dfrac{1}{2}+1\right)}=\dfrac{-\dfrac{3}{2}}{2\left(\dfrac{1}{2}\right)}=\dfrac{-3}{2}\)

\(P=\dfrac{-x^4+2x^3-2x+1}{4x^2-1}+\dfrac{8x^2-4x+2}{8x^3+1}\)

\(=\dfrac{\left(1-x^2\right)\left(1+x^2\right)+2x\left(x^2-1\right)}{4x^2-1}+\dfrac{2\left(4x^2-2x+1\right)}{\left(2x+1\right)\left(4x^2-2x+1\right)}\)

\(=\dfrac{\left(1-x^2\right)\left(1+x^2-2x\right)}{4x^2-1}+\dfrac{2}{2x+1}\)

\(=\dfrac{\left(1-x^2\right)\left(x^2-2x+1\right)+4x-2}{4x^2-1}\)

 

 

20 tháng 5 2022

TKS bạn

 

20 tháng 12 2017

Với \(x\ge-1\) thì \(\left|x+1\right|=x+1\)\(\Rightarrow A=\frac{x+1+2x}{3x^2-2x+1}=\frac{3x+1}{3x^2-2x+1}\)

         Thay \(x=\frac{3}{4}>-1\) vào ta được:\(A=\frac{3.\frac{3}{4}+1}{3.\left(\frac{3}{4}\right)^2-2.\frac{3}{4}+1}=\frac{52}{19}\)

Với \(x< -1\) thì \(\left|x+1\right|=-\left(x+1\right)=-x-1\)\(\Rightarrow A=\frac{-x-1+2x}{3x^2-2x+1}=\frac{x-1}{3x^2-2x+1}\)

      Thay \(x=-2< -1\) vào ta được \(A=\frac{-2-1}{3.\left(-2\right)^2-2.\left(-2\right)+1}=-\frac{3}{17}\)

a: Ta có: \(A=\left(\dfrac{2}{x-\sqrt{x}}-\dfrac{1}{\sqrt{x}-1}\right):\dfrac{x-4}{x\sqrt{x}+\sqrt{x}-2x}\)

\(=\dfrac{2-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\dfrac{\sqrt{x}\left(x-2\sqrt{x}+1\right)}{x-4}\)

\(=\dfrac{-\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}+2\right)}\)

\(=\dfrac{-\sqrt{x}+1}{\sqrt{x}+2}\)

NV
23 tháng 12 2022

\(A=\dfrac{2x}{x\left(x+y\right)}+\dfrac{6x}{\left(x-y\right)\left(x+y\right)}-\dfrac{3}{x-y}\)

\(=\dfrac{2\left(x-y\right)}{\left(x-y\right)\left(x+y\right)}+\dfrac{6x}{\left(x-y\right)\left(x+y\right)}-\dfrac{3\left(x+y\right)}{\left(x+y\right)\left(x-y\right)}\)

\(=\dfrac{2x-2y+6x-3x-3y}{\left(x-y\right)\left(x+y\right)}=\dfrac{5\left(x-y\right)}{\left(x-y\right)\left(x+y\right)}\)

\(=\dfrac{5}{x+y}\)

9 tháng 11 2017

I. Nội qui tham gia "Giúp tôi giải toán"

1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;

2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.

3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp .

Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.

tôi mong các bn sẽ ko làm như vậy !!!!!

21 tháng 8 2023

a/ Để rút gọn biểu thức A, chúng ta có thể thực hiện các bước sau:

Tích hợp tử số và mẫu số trong mỗi phần tử của biểu thức.Sử dụng công thức (a + b)(a - b) = a^2 - b^2 để loại bỏ căn bậc hai khỏi mẫu số.

Áp dụng các bước trên, ta có: A = (1/(2√x - 2)) + (1/(2√x + 2)) + (√x/(1 - x))

Bây giờ, chúng ta sẽ rút gọn biểu thức này: A = (1/(2√x - 2)) + (1/(2√x + 2)) + (√x/(1 - x)) = [(2√x + 2) + (2√x - 2) + (√x(2√x - 2)(2√x + 2))]/[(2√x - 2)(2√x + 2)(1 - x)] = [4√x + √x(4x - 4)]/[(4x - 4)(1 - x)] = [4√x + 4√x(x - 1)]/[-4(x - 1)(x - 1)] = [4√x(1 + x - 1)]/[-4(x - 1)(x - 1)] = -√x/(x - 1)

b/ Để tính giá trị của A với x = 4/9, ta thay x = 4/9 vào biểu thức đã rút gọn: A = -√(4/9)/(4/9 - 1) = -√(4/9)/(-5/9) = -√(4/9) * (-9/5) = -2/3 * (-9/5) = 6/5

Vậy, khi x = 4/9, giá trị của A là 6/5.

c/ Để tính giá trị của x sao cho giá trị tuyệt đối của A bằng 1/3, ta đặt: |A| = 1/3 |-√x/(x - 1)| = 1/3

Vì A là một số âm, ta có: -√x/(x - 1) = -1/3

Giải phương trình trên, ta có: √x = (x - 1)/3 x = ((x - 1)/3)^2 x = (x - 1)^2/9 9x = (x - 1)^2 9x = x^2 - 2x + 1 x^2 - 11x + 1 = 0

Sử dụng công thức giải phương trình bậc hai, ta có: x = (11 ± √(11^2 - 4 * 1 * 1))/2 x = (11 ± √(121 - 4))/2 x = (11 ± √117)/2

Vậy, giá trị của x để giá trị tuyệt đối của A bằng 1/3 là (11 + √117)/2 hoặc (11 - √117)/2.