Tính nhanh:
( 1 + 1/2 ) x ( 1 + 1/3 ) x ( 1 + 1/4 ) x ……. X ( 1 + 1/2000 )
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(\dfrac{2+1}{2}\right)\left(\dfrac{3+1}{3}\right)\left(\dfrac{4+1}{4}\right)...\left(\dfrac{2000+1}{2000}\right)\)
\(=\dfrac{3.4.5...2001}{2.3.4...2000}=\dfrac{2001}{2}\)
a: \(=\dfrac{3}{2}\cdot\dfrac{4}{3}\cdot...\cdot\dfrac{2001}{2000}=\dfrac{2001}{2}\)
b: \(=101\left(34+13-27\right)=101\cdot20=2020\)
c: \(=24\%+8\%+59\%+9\%=1\)
\(\dfrac{1}{1\times2}+\dfrac{1}{2\times3}+\dfrac{1}{3\times4}+\dfrac{1}{4\times5}+\dfrac{1}{5\times6}+\dfrac{1}{6\times7}+\dfrac{1}{7\times8}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}\)
\(=1-\dfrac{1}{8}=\dfrac{7}{8}\)
1/2 × 1/2 + 1/2 × 1/3 + 1/3 × 1/4 + 1/4 × 1/5 + 1/5 × 1/6
= 1/4 + 1/2×3 + 1/3×4 + 1/4×5 + 1/5×6
= 1/4 + 1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 + 1/5 - 1/6
= 1/4 + 1/2 - 1/6
= 3/12 + 6/12 - 2/12
= 9/12 - 2/12
= 7/12
\(\frac{1}{2}\times\frac{1}{2}+\frac{1}{2}\times\frac{1}{3}+\frac{1}{3}\times\frac{1}{4}+\frac{1}{4}\times\frac{1}{5}+\frac{1}{5}\times\frac{1}{6}\)
\(=\frac{1}{2\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+\frac{1}{4\times5}+\frac{1}{5\times6}\)
\(=\frac{1}{2}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}\)
\(=\frac{1}{2}-\frac{1}{6}\)
\(=\frac{1}{3}\)
th1: \(\left(\frac{y}{3}-5\right)^{2008}-\left(\frac{y}{3}-5\right)^{2000}=0\)
\(\left(\frac{y}{3}-5\right)^{2000}.\left[\left(\frac{y}{3}-5\right)^8-1\right]=0\)
\(=>\orbr{\begin{cases}\left(\frac{y}{3}-5\right)^{2000}=0\\\left(\frac{y}{3}-5\right)^{2008}-1=0\end{cases}}\)
\(=>\orbr{\begin{cases}\frac{y}{3}=5=>y=15\\\frac{y}{3}=6=>y=18,\frac{y}{3}=4=>y=12\end{cases}}\)
Vậy ...
P/S: cái đoạn\(\left(\frac{y}{3}-5\right)^{2008}-1=0\)vì số mũ chẵn nên y=18 hay bằng 12 nha!
M = \(\dfrac{1}{1x2}+\dfrac{1}{2x3}+\dfrac{1}{3x4}+...+\dfrac{1}{99x100}\)
M = \(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
M = \(1-\dfrac{1}{100}\)
M = \(\dfrac{99}{100}\)
a) \(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+...+\dfrac{1}{256}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{8}+...-\dfrac{1}{128}+\dfrac{1}{128}-\dfrac{1}{256}\)
\(=1-\dfrac{1}{256}\)
\(=\dfrac{255}{256}\)
b) \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{13.14}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...-\dfrac{1}{13}+\dfrac{1}{13}-\dfrac{1}{14}\)
\(=1-\dfrac{1}{14}\)
\(=\dfrac{13}{14}\)
c) \(\dfrac{3}{15.18}+\dfrac{3}{18.21}+\dfrac{3}{21.24}+...+\dfrac{3}{87.90}\)
\(=3.\left(\dfrac{1}{15.18}+\dfrac{1}{18.21}+\dfrac{1}{21.24}+...+\dfrac{1}{87.90}\right)\)
\(=3.\left[\dfrac{1}{3}.\left(\dfrac{1}{15}-\dfrac{1}{18}\right)+\dfrac{1}{3}.\left(\dfrac{1}{18}-\dfrac{1}{21}\right)+\dfrac{1}{3}.\left(\dfrac{1}{21}-\dfrac{1}{24}\right)+...+\dfrac{1}{3}.\left(\dfrac{1}{87}-\dfrac{1}{90}\right)\right]\)
\(=3.\dfrac{1}{3}.\left(\dfrac{1}{15}-\dfrac{1}{18}+\dfrac{1}{18}-\dfrac{1}{21}+\dfrac{1}{21}-\dfrac{1}{24}+...+\dfrac{1}{87}-\dfrac{1}{90}\right)\)
\(=\dfrac{1}{15}-\dfrac{1}{90}\)
\(=\dfrac{6}{90}-\dfrac{1}{90}\)
\(=\dfrac{5}{90}=\dfrac{1}{18}\)
Ta có:A=(1−12)×(1−13)×.......×(1−12000)A=(1−12)×(1−13)×.......×(1−12000)
=12×23×34×..........×19992000=12×23×34×..........×19992000
=12000=12000
Vậy giá trị của A là:12000
\(=\dfrac{3}{2}\cdot\dfrac{4}{3}\cdot...\cdot\dfrac{2001}{2000}=\dfrac{2001}{2}\)