K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔMNE có \(ME^2=NM^2+NE^2\)

nên ΔMNE vuông tại N

b: MH=3,6cm

HE=6,4cm

23 tháng 2 2022

a, Xét ΔMNE có:

\(\widehat{M}+\widehat{N}+\widehat{E}=180^o\\ \Rightarrow\widehat{E}+40^o+50^o=180^o\\ \Rightarrow\widehat{E}=90^o\)

⇒ΔMNE vuông tại E

b,Áp dụng định lý Pi-ta-go ta có:

\(EN^2+EM^2=MN^2\\ \Rightarrow NE^2=MN^2-EM^2\\ \Rightarrow NE=\sqrt{25^2-15^2}\\ \Rightarrow NE=20\left(cm\right)\)

23 tháng 2 2022

Ta có E+M+N=180 độ (tổng 3 góc trong 1 tam giác)

=>E+40+50=180 độ

=>E+90=180 độ

=>E=180-90=90 độ

=>tam giác MNE vuông tại E vì có E là góc 90 độ

b)Xét tam giác MNE vuông tại E chứng minh trên có:

\(ME^2+EN^2=MN^2\)

\(15^2+EN^2=25^2\)

\(EN^2=25^2-15^2=625-225=400\)

\(=>EN=20cm\)

=>Kết luận...

Chúc em học giỏi =)

a: Xét ΔMNE vuông tại E và ΔKNE vuông tại E có

NE chung

góc MNE=góc KNE

=>ΔMNE=ΔKNE

b: Xét ΔNMD và ΔNKD có

NM=NK

góc MND=góc KND

ND chung

=>ΔNMD=ΔNKD

=>góc NKD=90 độ

=>DK vuông góc NP

12 tháng 5 2023

ơn ạ

14 tháng 3 2022

cho tam giác mne có mn=6cm, me = 9cm,trên cạnh mn lấy điểm h sao cho mh = 2 cm, trên cạnh me lấy điểm k sao cho ek = 6cm.chứng minh hk//ne

 giúp mình với

a: Xét ΔNMH vuông tại M và ΔNEH vuông tại E có

NH chung

góc MNH=góc ENH

=>ΔNMH=ΔNEH

b: Xét ΔNME có NM=NE và góc MNE=60 độ

nên ΔMNE đều

a: Xet ΔMNE và ΔMPE có

MN=MP

NE=PE

ME chung

=>ΔMNE=ΔMPE

b: Xét ΔMHE vuông tại H và ΔMKE vuông tại K có

ME chung

góc HME=góc KME

=>ΔMHE=ΔMKE

=>EH=EK

c: MH=MK

EH=EK

=>ME là trung trực của HK

a:Xét ΔMQN vuông tại Q và ΔMQE vuông tại Q có 

QN=QE

MQ chung

Do đó: ΔMQN=ΔMQE

b: ta có: ΔMQN=ΔMQE

nên MN=ME

=>ΔMNE cân tại M

mà \(\widehat{N}=60^0\)

nên ΔMNE đều

11 tháng 5 2022

a, Xét Δ MQN và Δ MQE, có :

\(\widehat{MQN}=\widehat{MQE}=90^o\)

QN = QE (gt)

MQ là cạnh chung

=> Δ MQN = Δ MQE (c.g.c)

b, Ta có : Δ MQN = Δ MQE (cmt)

=> MN = ME

=> Δ MNE cân tại M

Xét Δ MNP vuông tại N, có :

\(\widehat{NMP}+\widehat{MPN}+\widehat{PNM}=180^o\)

=> \(\widehat{PNM}=90^o-30^o\)

=> \(\widehat{PNM}=60^o\)

Mà Δ MNE cân tại M

=> ΔMNE đều

a) Xét ΔMNH vuông tại H và ΔNQP vuông tại P có 

\(\widehat{MNH}=\widehat{NQP}\)(hai góc so le trong, MN//QP)

Do đó: ΔMNH\(\sim\)ΔNQP(g-g)

b) Áp dụng hệ thức lượng trong tam giác vuông vào ΔMNQ vuông tại M có MH là đường cao ứng với cạnh huyền NQ, ta được:

\(NH\cdot NQ=MN^2\)