K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a:Xét ΔMQN vuông tại Q và ΔMQE vuông tại Q có 

QN=QE

MQ chung

Do đó: ΔMQN=ΔMQE

b: ta có: ΔMQN=ΔMQE

nên MN=ME

=>ΔMNE cân tại M

mà \(\widehat{N}=60^0\)

nên ΔMNE đều

11 tháng 5 2022

a, Xét Δ MQN và Δ MQE, có :

\(\widehat{MQN}=\widehat{MQE}=90^o\)

QN = QE (gt)

MQ là cạnh chung

=> Δ MQN = Δ MQE (c.g.c)

b, Ta có : Δ MQN = Δ MQE (cmt)

=> MN = ME

=> Δ MNE cân tại M

Xét Δ MNP vuông tại N, có :

\(\widehat{NMP}+\widehat{MPN}+\widehat{PNM}=180^o\)

=> \(\widehat{PNM}=90^o-30^o\)

=> \(\widehat{PNM}=60^o\)

Mà Δ MNE cân tại M

=> ΔMNE đều

a Xet ΔMQN vuông tại Q và ΔMQE vuông tại Q có

MQ chung

QN=QE
=>ΔMQN=ΔMQE

b: Xet ΔMEN có

MN=ME

góc N=60 độ

=>ΔMEN đều

28 tháng 2 2020

a, xét tma giác MNE và tam giác MPE có :

MN = MP và góc MNE = góc MPE do tam giác MNP cân tại M (Gt)

NE = EP do E là trđ của NP (gt)

=> tam giác MNE = tam giác MPE (c-g-c)

=> góc MEN = góc MEP (đn)

mà góc MEN + góc MEP = 180 (kb)

=> góc MEN = 90

=> MN _|_ NP và có M là trđ của PN (Gt)

=> ME là trung trực của NP (đn)

b, xét tam giác MKE và tam giác MHE có : ME chung

góc NME = góc PME do tam giác MNE = tam giác MPE (Câu a)

góc MKE = góc MHE = 90

=> tam giác MKE = tam giác MHE (ch-cgv)

=> MK = MH (đn)

=> tam giác MHK cân tại M (đn)

=> góc MKH = (180 - góc NMP) : 2 (tc)

tam giác MNP cân tại M (Gt) => góc MNP = (180 - góc NMP) : 2 (tc)

=> góc MKH = góc MNP mà 2 góc này đồng vị

=> KH // NP (đl)

3 tháng 5 2023

Tự kẻ hình nha

a) - Vì tam giác MNP cân tại M (gt)
=> MN = MP (định nghĩa)
     góc MNP = góc MPN (dấu hiệu)
- Vì NH vuông góc với MP (gt)
=> tam giác NHP vuông tại H 
- Vì PK vuông góc với MN (gt)
=> tam giác PKN vuông tại K
- Xét tam giác vuông NHP và tam giác vuông PKN, có:
    + Chung NP
    + góc HPN = góc KNP (cmt)
=> tam giác vuông NHP = tam giác vuông PKN (cạnh huyền - góc nhọn)

b) Vì tam giác vuông NHP = tam giác vuông PKN (cmt)
=> góc HNP = góc KPN (2 góc tương ứng)
=> tam giác ENP cân tại E (dấu hiệu)

c) - Vì tam giác ENP cân tại E (cmt)
=> EN = EP (định nghĩa)
- Xét tam giác MNE và tam giác MPE, có:
    + Chung ME 
    + MN = MP (cmt)
    + EN = EP (cmt)
=> tam giác MNE = tam giác MPE (ccc)
=> góc NME = góc PME (2 góc tương ứng)
=> ME là đường phân giác góc NMP (tc)

29 tháng 2 2016

giúp vs mình cần gấp :(((

15 tháng 5 2018

Câu a  (1,0đ) Chứng minh :ABD = ACE

Xét ABD và ACE :có AB=AC (cạnh bên cân); =(góc đáycân);BD=CE (gt)  (0,25đ)  x3=(0,75đ)  

Vậy ABD = ACE(cgc)                                                    (0,25đ)  

Câu b (0,75đ)  Chứng minh đúng vuông AMD =  vuông ANE vì có AD = AE;

(do ABD =ACE)                                                             (0,5đ)

Kết luận  AMD = ANE và suy ra  AM =AN)                (0,25đ)  

Câu c (0,75đ): Chứng minh đúng vuông BMD = vuông CNE  (cạnh huyền - góc nhọn )(0,25đ)

 Lập luận  chứng minh được rồi suy ra KDE cân tại K (1)(0,25đ)

Từ  lập luận để (2)

Kết hợp (1)và (2) KDE đều )(0,25đ)

16 tháng 5 2018

https://olm.vn/hoi-dap/question/1231127.html

16 tháng 5 2018

a) Xét tam giác ABD và tam giác ACE có:

          AB = AC (Vì tam giác ABC cân tại A)

         \(\widehat{ABC}=\widehat{ACB}\)(vì tam giác ABC cân tại A)

         BD = CE (gt)

Do đó ​tam giác ABD = tam giác ACE(cgc)

b) Ta có: tam giác ABD = tam giác ACE (cmt)

    \(\Rightarrow\)AD = AE (hai cạnh tương ứng) (1)

    \(\Rightarrow\widehat{BAD}=\widehat{CAE}\)(hai góc tương ứng) (2)

Từ (1) và (2) \(\Rightarrow\) tam giác vuông AMD = tam giác vuông ANE (ch-gn) 

     \(\Rightarrow\)AM = AN (hai cạnh tương ứng)

c) Trong tam giác ABC có góc BAC=120 độ

\(\Rightarrow\)Góc ABC = góc ACB = \(\frac{180-120}{2}\)=  30 độ

 Trong tam giác vuông BMD có góc MBD = 30 độ \(\Rightarrow\widehat{MDB}=60\)độ

Tương tự: Ta được, trong tam giác vuông NCE có góc NEC =60 độ

\(\Rightarrow\)\(\widehat{MDB}=\widehat{NEC}\)(=60 độ)

Mặt khác: \(\widehat{MDB}=\widehat{EDK}\left(đđ\right)\)

                \(\widehat{NEC}=\widehat{DEK}\left(đđ\right)\)

\(\Rightarrow\widehat{EDK}=\widehat{DEK}\)(=60 độ)

\(\Rightarrow\widehat{DKE}=180-\left(60\times2\right)=60\)độ

\(\Rightarrow\)Trong tam giác DKE có 3 góc EDK;DEK;DKE cùng bằng 60

  Hay tam giác DKE đều.

         

      

16 tháng 5 2018

a) Xét hai tam giác ABD và ACE ta có

AB = AC (gt)

\(\widehat{ABD}=\widehat{ACE}\left(gt\right)\)

BD = CE (gt)

Do đó: \(\Delta ABD=\Delta ACE\left(c-g-c\right)\)

b) Ta có: \(\Delta ABD=\Delta ACE\)(câu a)

\(=>\hept{\begin{cases}\widehat{BAD}=\widehat{EAC}\\AD=AE\end{cases}}\)(cặp góc và cặp cạnh tương ứng)

Xét hai tam giác vuông AMD và ANE ta có

AD = AE (cmt)

\(\widehat{MAD}=\widehat{EAN}\left(cmt\right)\)

Do đó: \(\Delta AMD=\Delta ANE\left(c.h-g.n\right)\)

=> AM =AN (cặp cạnh tương ứng)

c) Trong \(\Delta ABC\)cân tại A ta có: \(\widehat{ABC}=\widehat{ACB}=\frac{180^o-\widehat{BAC}}{2}=\frac{180^o-120^0}{2}=30^o\)

Trong \(\Delta MDB\)vuông tại M ta có: \(\widehat{BDM}=90^o-\widehat{DBM}=90^o-30^o=60^o\)

Ta lại có: \(\widehat{ABC}=\widehat{ACB}\left(gt\right)\)

=> \(\widehat{MDB}=\widehat{NEC}\)(vì cùng bù với \(\widehat{ABC}\))

mà \(\hept{\begin{cases}\widehat{BDM}=\widehat{KDE}\left(đđ\right)\\\widehat{NEC}=\widehat{DEK}\left(đđ\right)\end{cases}}\)

=> \(\widehat{KDE}=\widehat{KED}=60^o\)(1)

Trong \(\Delta DKE\)có: \(\widehat{KDE}+\widehat{KED}+\widehat{DKE}=180^o\)

                            hay \(60^o+60^o+\widehat{DKE}=180^o\)   

                                    \(120^o+\widehat{DKE}=180^o\)

                                                      \(\widehat{DKE}=180^o-120^o\)

                                                      \(\widehat{DKE}=60^o\)(2)

Từ (1) và (2) => \(\Delta DKE\)là tam giác đều

P/s: k hộ thần :3