\(\frac{b^2-a^2}{a^2+c^2}=\frac{b-a}{a}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=\left(1+\frac{b^2+c^2-a^2}{2bc}\right).\frac{1+\frac{a}{b+c}}{1-\frac{a}{b+c}}.\frac{b^2+c^2-\left(b-c\right)^2}{a+b+c}\)
\(=\frac{2bc+b^2+c^2-a^2}{2bc}.\frac{\frac{a+b+c}{b+c}}{\frac{b+c-a}{b+c}}.\frac{b^2+c^2-b^2+2bc-c^2}{a+b+c}\)
\(=\frac{\left(b+c+a\right)\left(b+c-a\right)}{2bc}.\frac{a+b+c}{b+c-a}.\frac{2bc}{a+b+c}\)
\(=a+b+c\)
b) \(B=\frac{\frac{3a}{a+b}}{\frac{2a}{a^2-2ab+b^2}}\)\(=\frac{3a}{a+b}.\frac{\left(a-b\right)^2}{2a}=\frac{3\left(a-b\right)^2}{2\left(a+b\right)}\)
c) \(C=\frac{\frac{a}{b}+\frac{b}{a}}{\frac{a}{b}-\frac{b}{a}}:\frac{\frac{a^2}{b^2}-\frac{b^2}{a^2}}{\left(\frac{1}{a}+\frac{1}{b}\right)^2}\)
\(=\frac{\frac{a^2+b^2}{ab}}{\frac{a^2-b^2}{ab}}:\frac{\frac{a^4-b^4}{a^2b^2}}{\frac{\left(a+b\right)^2}{a^2b^2}}\)
\(=\frac{a^2+b^2}{a^2-b^2}.\frac{\left(a+b\right)^2}{a^4-b^4}\)
\(=\frac{\left(a^2+b^2\right)\left(a+b\right)^2}{\left(a+b\right)\left(a-b\right)\left(a^2+b^2\right)\left(a+b\right)\left(a-b\right)}\)
\(=\frac{1}{\left(a-b\right)^2}\)
Lần sau đăng ít một thôi toàn bài dài :v, ko phải ko làm mà là ngại làm
a)Áp dụng BĐT Cauchy-Schwarz ta có:
\(\frac{a}{2a+b+c}=\frac{a}{\left(a+b\right)+\left(a+c\right)}\le\frac{1}{4}\left(\frac{a}{a+b}+\frac{a}{a+c}\right)\)
Tương tự cho 2 BĐT còn lại ta cũng có:
\(\frac{b}{a+2b+c}\le\frac{1}{4}\left(\frac{b}{a+b}+\frac{b}{b+c}\right);\frac{c}{a+b+2c}\le\frac{1}{4}\left(\frac{c}{a+c}+\frac{c}{b+c}\right)\)
Cộng theo vế 3 BĐT trên ta có:
\(VT\le\frac{1}{4}\left(\frac{a+b}{a+b}+\frac{b+c}{b+c}+\frac{c+a}{c+a}\right)=\frac{3}{4}\)
Xảy ra khi \(a=b=c\)
b)Đặt \(THANG=abc\left(a^2+bc\right)\left(b^2+ac\right)\left(c^2+ab\right)>0\)
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}-\frac{b+c}{a^2+bc}-\frac{c+a}{b^2+ac}-\frac{a+b}{a^2+ab}\)
\(=\frac{a^4b^4+b^4c^4+c^4a^4-a^4b^2c^2-b^4c^2a^2-c^4a^2b^2}{THANG}\)
\(=\frac{\left(a^2b^2-b^2c^2\right)^2+\left(b^2c^2-c^2a^2\right)+\left(c^2a^2-a^2b^2\right)^2}{2THANG}\ge0\) (Đúng)
Xảy ra khi \(a=b=c\)
c)Ta có:\(\frac{a^2}{b^2+c^2}-\frac{a}{b+c}=\frac{ab\left(a-b\right)+ac\left(a-c\right)}{\left(b+c\right)\left(b^2+c^2\right)}\)
Và \(\frac{b^2}{c^2+a^2}-\frac{b}{c+a}=\frac{bc\left(b-c\right)+ab\left(b-a\right)}{\left(c+a\right)\left(c^2+a^2\right)}\)
\(\frac{c^2}{a^2+b^2}-\frac{c}{a+b}=\frac{ac\left(c-a\right)+bc\left(c-b\right)}{\left(b+a\right)\left(b^2+a^2\right)}\)
Cộng theo vế 3 đăng thức trên ta có:
\(VT-VP=Σ\left[\frac{ab\left(a-b\right)}{\left(b+c\right)\left(b^2+c^2\right)}-\frac{ab\left(a-b\right)}{\left(a+c\right)\left(a^2+c^2\right)}\right]\)
\(=\left(a^2+b^2+c^2+ab+bc+ca\right)\cdotΣ\frac{ab\left(a-b\right)^2}{\left(b+c\right)\left(c+a\right)\left(b^2+c^2\right)\left(c^2+a^2\right)}\ge0\)
2 bài cuối full quy đồng mệt thật :v
a/ \(\frac{b}{b}.\sqrt{\frac{a^2+b^2}{2}}+\frac{c}{c}.\sqrt{\frac{b^2+c^2}{2}}+\frac{a}{a}.\sqrt{\frac{c^2+a^2}{2}}\)
\(\le\frac{1}{b}.\left(\frac{3b^2+a^2}{4}\right)+\frac{1}{c}.\left(\frac{3c^2+b^2}{4}\right)+\frac{1}{a}.\left(\frac{3a^2+c^2}{4}\right)\)
\(=\frac{1}{4}.\left(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\right)+\frac{3}{4}.\left(a+b+c\right)\)
Ta cần chứng minh
\(\frac{1}{4}.\left(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\right)+\frac{3}{4}.\left(a+b+c\right)\le\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\)
\(\Leftrightarrow\left(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\right)\ge\left(a+b+c\right)\)
Mà: \(\Leftrightarrow\left(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\right)\ge\frac{\left(a+b+c\right)^2}{a+b+c}=a+b+c\)
Vậy có ĐPCM.
Câu b làm y chang.