Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tham khảo:
Câu hỏi của Phạm Vũ Trí Dũng - Toán lớp 8 | Học trực tuyến
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{a}+\frac{1}{c}+\frac{1}{b}+\frac{1}{c}\ge4\left(\frac{1}{a+b}+\frac{1}{a+c}+\frac{1}{b+c}\right)\ge2\)
\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge1\)
Đặt \(\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)=\left(x;y;z\right)\Rightarrow x+y+z\ge1\)
\(P=\sqrt{x^2+2y^2}+\sqrt{y^2+2z^2}+\sqrt{z^2+2x^2}\)
\(\Rightarrow P\ge\sqrt{\frac{\left(x+2y\right)^2}{3}}+\sqrt{\frac{\left(y+2z\right)^2}{3}}+\sqrt{\frac{\left(z+2x\right)^2}{3}}\)
\(\Rightarrow P\ge\frac{1}{\sqrt{3}}\left(3x+3y+3z\right)\ge\frac{3}{\sqrt{3}}=\sqrt{3}\)
Dấu "=" xảy ra khi \(x=y=z=\frac{1}{3}\) hay \(a=b=c=3\)
Làm bài này một hồi chắc bay não:v
Bài 1:
a) Áp dụng BĐT AM-GM:
\(VT\le\frac{a+b}{4}+\frac{b+c}{4}+\frac{c+a}{4}=\frac{a+b+c}{2}^{\left(đpcm\right)}\)
Đẳng thức xảy ra khi a = b = c.
b)Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có đpcm.
Bài 2:
a) Dấu = bài này không xảy ra ? Nếu đúng như vầy thì em xin một slot, ăn cơm xong đi ngủ rồi dậy làm:v
b) Theo BĐT Bunhicopxki:
\(VT^2\le3.\left[\left(a+b\right)+\left(b+c\right)+\left(c+a\right)\right]=6\Rightarrow VT\le\sqrt{6}\left(qed\right)\)
Đẳng thức xảy r akhi \(a=b=c=\frac{1}{3}\)
Bài 3: Theo BĐT Cauchy-Schwarz và bđt AM-GM, ta có:
\(VT\ge\frac{4}{2-\left(x^2+y^2\right)}\ge\frac{4}{2-2xy}=\frac{2}{1-xy}\)
1) Áp dụng bunhiacopxki ta được \(\sqrt{\left(2a^2+b^2\right)\left(2a^2+c^2\right)}\ge\sqrt{\left(2a^2+bc\right)^2}=2a^2+bc\), tương tự với các mẫu ta được vế trái \(\le\frac{a^2}{2a^2+bc}+\frac{b^2}{2b^2+ac}+\frac{c^2}{2c^2+ab}\le1< =>\)\(1-\frac{bc}{2a^2+bc}+1-\frac{ac}{2b^2+ac}+1-\frac{ab}{2c^2+ab}\le2< =>\)
\(\frac{bc}{2a^2+bc}+\frac{ac}{2b^2+ac}+\frac{ab}{2c^2+ab}\ge1\)<=> \(\frac{b^2c^2}{2a^2bc+b^2c^2}+\frac{a^2c^2}{2b^2ac+a^2c^2}+\frac{a^2b^2}{2c^2ab+a^2b^2}\ge1\) (1)
áp dụng (x2 +y2 +z2)(m2+n2+p2) \(\ge\left(xm+yn+zp\right)^2\)
(2a2bc +b2c2 + 2b2ac+a2c2 + 2c2ab+a2b2). VT\(\ge\left(bc+ca+ab\right)^2\) <=> (ab+bc+ca)2. VT \(\ge\left(ab+bc+ca\right)^2< =>VT\ge1\) ( vậy (1) đúng)
dấu '=' khi a=b=c
Ta luôn có :
\(\left(\frac{1}{\sqrt{a}}-\frac{1}{\sqrt{b}}\right)^2\ge0\forall a,b\)
\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}\ge\frac{2}{\sqrt{ab}}\)
\(\Leftrightarrow2\left(\frac{1}{a}+\frac{1}{b}\right)\ge\frac{2}{\sqrt{ab}}+\frac{1}{a}+\frac{1}{b}\)
\(\Leftrightarrow\frac{2\left(a+b\right)}{ab}\ge\left(\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}\right)^2\)
\(\Leftrightarrow\sqrt{\frac{2\left(a+b\right)}{ab}}\ge\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}\)
Tương tự cho 2 BĐT còn lại rồi cộng theo vế :
\(\sqrt{2}\left(\sqrt{\frac{a+b}{ab}}+\sqrt{\frac{b+c}{bc}}+\sqrt{\frac{a+c}{ac}}\right)\)
\(\ge2\left(\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}\right)\)
\(\Leftrightarrow\sqrt{\frac{a+b}{ab}}+\sqrt{\frac{b+c}{bc}}+\sqrt{\frac{a+c}{ac}}\ge\sqrt{\frac{2}{a}}+\sqrt{\frac{2}{b}}+\sqrt{\frac{2}{c}}\)
Dấu " = " xảy ra \(\Leftrightarrow a=b=c\)
Chúc bạn học tốt !!!
Đặt \(\frac{1}{\sqrt{a}}=x,\frac{1}{\sqrt{b}}=y,\frac{1}{\sqrt{c}}\)=z
Thay vào ta có:\(\sqrt{2}\)(x+y+x)\(\le\)\(\sqrt{\left(x^2+y^2\right)}+\sqrt{x^2+z^2}+\sqrt{\left(y^2+z^2\right)}\)
Ta có bất đẳng thức sau A: (m2+n2)(p2+q2)\(\ge\)(mp+nq)2 dễ dàng chứng mình bằng cách khai triển
áp dụng bdt A với m=x,n=z,p=\(\sqrt{2}\).q=\(\sqrt{2}\) ta được
\(\sqrt{\frac{\left(x^2+z^2\right)\left(\sqrt{2}^2+\sqrt{2}^2\right)}{4}}\ge\sqrt{\left(x\sqrt{2}+z\sqrt{2}\right)^2}\)/2=\(\frac{\sqrt{2}\left(x+y\right)}{2}\)
Tương tự với cái phần tử còn lại ta được điều cần cm
a/ \(\frac{b}{b}.\sqrt{\frac{a^2+b^2}{2}}+\frac{c}{c}.\sqrt{\frac{b^2+c^2}{2}}+\frac{a}{a}.\sqrt{\frac{c^2+a^2}{2}}\)
\(\le\frac{1}{b}.\left(\frac{3b^2+a^2}{4}\right)+\frac{1}{c}.\left(\frac{3c^2+b^2}{4}\right)+\frac{1}{a}.\left(\frac{3a^2+c^2}{4}\right)\)
\(=\frac{1}{4}.\left(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\right)+\frac{3}{4}.\left(a+b+c\right)\)
Ta cần chứng minh
\(\frac{1}{4}.\left(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\right)+\frac{3}{4}.\left(a+b+c\right)\le\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\)
\(\Leftrightarrow\left(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\right)\ge\left(a+b+c\right)\)
Mà: \(\Leftrightarrow\left(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\right)\ge\frac{\left(a+b+c\right)^2}{a+b+c}=a+b+c\)
Vậy có ĐPCM.
Câu b làm y chang.
hình như sai đề