K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 5 2016

= 2.(1 / 2.3 + 1 / 3.4 + ..... + 1 / x (x + 1) = 2007/2009

= 2.(1/2 - 1/3 + 1/3 - +.......+ 1/x - 1/x+1) = 2007/2009

= 2.( 1/2 - 1/x+1) = 2007/2009

= 1 - 1/x+1 =2007/2009

= 1/x+1 = 1/2009

=> x + 1 = 2009

=> x = 2008

6 tháng 5 2016

Ta có: 2/2.3 + 2/3.4 + .... + 2/x.(x+1) = 2007/2009

=> 2.[1/2.3+1/3.4+.....+1/x.(x+1)]=2007/2009

=> 2.(1/2-1/3+1/3-1/4 + .... + 1/x - 1/x+1) = 2007/2009

=> 2.(1/2-1/x+1)=2007/2009

=>1/2 - 1/x+1 = 2007/2009 : 2

=> 1/2 - 1/x+1 = 2007/4018

=> 1/x+1 = 2007/4018 +1/2 

=> 1/x+1 = 

13 tháng 6 2016

428758

1 tháng 4 2021

\(S=\frac{101}{120}+\frac{1}{2.3}\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...\frac{1}{18.19}+\frac{1}{19.20}\right)\)

\(S=\frac{101}{120}+\frac{1}{6}\left(\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{19-18}{18.19}+\frac{20-19}{19.20}\right)\)

\(S=\frac{101}{120}+\frac{1}{6}\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{18}-\frac{1}{19}+\frac{1}{19}-\frac{1}{20}\right)\)

\(S=\frac{101}{120}+\frac{1}{6}\left(1-\frac{1}{20}\right)=\frac{101}{120}+\frac{19}{120}=\frac{120}{120}=1\)

30 tháng 12 2015

các bạn ko biết thì đừng có nói linh tinh và nói chtt nua

AH
Akai Haruma
Giáo viên
14 tháng 7 2023

Lời giải:

Ta thấy: $x^2-3x+2=(x-1)(x-2)$. Do đó để $f(x)$ chia hết cho $g(x)$ thì $f(x)\vdots x-1$ và $f(x)\vdots x-2$

Tức là $f(1)=f(2)=0$ (theo định lý Bê-du)

$\Leftrightarrow 3-2+(a-1)+3+b=3.2^4-2.2^3+(a-1).2^2+3.2+b=0$

$\Leftrightarrow a+b=-3$ và $4a+b=-34$

$\Rightarrow a=\frac{-31}{3}$ và $b=\frac{22}{3}$

28 tháng 1 2022

a, \(A=2x^3-9x^5+3x^5-3x^2+7x^2-12=-6x^5+2x^3+4x^2-12\)

b, \(B=2x^4+x^2+2x-2x^3-2x^2+x^2-2x+1=2x^4-2x^3+1\)

c, \(C=2x^2+x-x^3-2x^2+x^3-x+3=3\)