K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 5 2015

a)xét t/g EAC và t/g FBC

góc AEC=góc BFC=900

góc ECA= góc BCF(Ci là p/giác của góc BCA)

Suy ra t/g EAC~t/g FBC

=>CE/CF=CA/CB

=>CE.CB=CF.CA

b)xét t/g ABC và t/g DBA

góc BAC= góc ADB= 900

góc ABC: chung

Suy ra t/g ABC~t/g DBA

ta có CE/CF=IE/IF(câu b)

 

21 tháng 4 2016

a) Vì I là giao điểm của tia phân giác B và C nên AI là tia phân giác ( tia phân giác thứ 3) 

Xét tam giác ADI và tam giác AEI ta có :

AI chung ; góc IDA= góc AEI (=90 độ) ; góc DAI=góc AEI (AI phân giác) 

=> Tam giác...=tam giác... (cạnh huyền-góc nhọn)

=> AD=AE (2 cạnh tương ứng)

b) Kẻ IF vuông góc BC 

Xét tam giác BDI và tam giác BFI ta có 

góc BDI=BFI(=90 độ) ; BI chung ; góc DBI= góc IBF (BI phân giác); 

=> tam giác ....= tam giác .. (cạnh huyền-góc nhọn)

=> BD=BF( 2 cạnh tương ứng )

Xét tam giác CFI và tam giác CEI ta có 

góc CFI=CEI(=90 độ) ; CI chung ; góc FCI= góc ECI (BI phân giác); 

=> tam giác ....= tam giác .. (cạnh huyền-góc nhọn)

=> CE=CF( 2 cạnh tương ứng )

Ta có : BF+FC=BC

hay     BD+EC=BC 

Vậy BD+EC=BC

c) Xét tam giác ABC vuông tại A ta có 

            AB2+AC2=BC2

hay      62+82= BC2

   => BC2=100

   =>BC=10 (cm)

Ta có BC= BD+CE (câu b)

             = 6-AD+8-AE

             =14-2AD

Hay 14-2AD=BC

       14-2AD=10

            2AD=14-10=4

=> AD=AE=2 (cm)

(Hình tự vẽ nha)

13 tháng 10 2022

a: \(AB=\sqrt{3\cdot15}=3\sqrt{5}\left(cm\right)\)

\(AC=\sqrt{12\cdot15}=6\sqrt{5}\left(cm\right)\)

b: \(\dfrac{HF}{HE}=\dfrac{AE}{AF}=\dfrac{AH^2}{AB}:\dfrac{AH^2}{AC}=\dfrac{AC}{AB}=2\)

=>HF=2HE

18 tháng 10 2021

b: Xét ΔAHB vuông tại H có HE là đường cao ứng với cạnh huyền AB

nên \(AE\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HF là đường cao ứng với cạnh huyền AC

nên \(AF\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AE\cdot AB=AF\cdot AC\)

5 tháng 11 2023

loading...

`a)` Tỉ số lượng giác góc `B` của \(\Delta ABC\)

\(SinB=\dfrac{AC}{BC}\\ CosB=\dfrac{AB}{BC}\\ TanB=\dfrac{AC}{AB}\\ CotB=\dfrac{AB}{AC}\)

`b)` Tính `BC,AH`

Xét \(\Delta ABC\) vuông tại `A`, đường cao `AH`

Ta có: \(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\left(htl\right)\)

\(\Rightarrow\dfrac{1}{AH^2}=\dfrac{1}{6^2}+\dfrac{1}{8^2}\\ \Rightarrow\dfrac{1}{AH^2}=\dfrac{25}{576}\\ \Rightarrow AH^2=\dfrac{576\cdot1}{25}=23,04\\ \Rightarrow AH=\sqrt{23,04}=4,8cm\)

Ta có: \(AB\cdot AC=AH\cdot BC\left(htl\right)\)

\(\Rightarrow6\cdot8=4,8\cdot BC\\ \Rightarrow48=4,8\cdot BC\\ \Rightarrow BC=\dfrac{48}{4,8}\\ \Rightarrow BC=10cm\)

Vậy: `AH = 4,8cm; BC= 10cm`

`c)` C/m: `AE * AB = AF * AC`

Xét \(\Delta AHB\) vuông tại `H`, đường cao `HE`

Ta có: \(AH^2=AE\cdot AB\left(htl\right)\)     `(1)`

Xét \(\Delta AHC\) vuông tại `H`, đường cao `HF`

Ta có: \(AH^2=AF\cdot AC\left(htl\right)\)     `(2)`

Từ `(1)` và `(2)` \(\Rightarrow AH^2=AH^2\)

\(\Rightarrow AE\cdot AB=AF\cdot AC\left(=AH^2\right).\)