Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Do D, E thuộc đường tròn đường kính DE nên \(\widehat{DAE}=\widehat{DHE}=90^o\)
Xét tứ giác ADHE có 3 góc vuông nên nó là hình chữ nhật.
Do ADHE là hình chữ nhật nên hai đường chéo DE và AH cắt nhau tại trung điểm mỗi đường. Mà O là trung điểm AH nên O là trung điểm DE.
Vậy D, O, E thẳng hàng.
b) Do AH vuông góc BC nên BC cũng là tiếp tuyến tại H của đường tròn (O)
Áp dụng tính chất hai tiếp tuyến cắt nhau, ta có : DM = MH.
Xét tam giác vuông ADH có DM = MH nên DM = MH = MB hay M là trung điểm BH.
Tương tự N là trung điểm HC.
c) Dễ thấy MDEN là hình thang vuông.
Vậy thì \(S_{MDEN}=\frac{\left(MD+EN\right).DE}{2}=\frac{\left(MH+HN\right).AH}{2}\)
\(=\frac{MN.AH}{2}=\frac{\frac{1}{2}BC.AH}{2}=\frac{1}{4}BC.AH=\frac{1}{4}AB.AC\)
\(=\frac{1}{4}.9.8=18\left(cm^2\right)\)
a, Ta có A E H ^ = A D H ^ = D A E ^ = 90 0 => Tứ giác ADHE là hình chữ nhật
Lại có AB.AD = AH2 = AE.AC nên AB.AD = AE.AC
b, HB = 9cm, HC = 16cm (Lưu ý: AB < AC nên HB < HC)
HD = 36 5 cm, HE = 48 5 cm, Sxq = 3456 25 πcm 2 , V = 62208 125 πcm 3
a: góc ADH=góc AEH=góc DAE=90 độ
=>ADHE là hình chữ nhật
Tâm O là trung điểm của AH
bán kính là AH/2=R
b:
ΔABC vuông tại A có AH là đường cao
nên HA^2=HB*HC
=>HA/HC=HB/HA
HO/HN=HA/HC=HB/HA
Xét ΔBHO vuông tại H và ΔAHN vuông tại H có
HB/HA=HO/HN
=>ΔBHO đồng dạng với ΔAHN
Phần a dễ tự làm nhé.
b, Gọi MH giao AB = K
NH giao AC = T
O là trung điểm BC
=> tam giác OAB cân tại O=> góc OBA = góc OAB
phần a=>góc OBA = góc ABM
=> góc MAB + góc BAO = góc MAB + góc MBA = 90 độ
TT OAN = 90 độ
=> A , M ,N thẳng hàng
MAO = 90 độ => MA vuông góc OA => MN là tiếp tuyến của (O,OB)