K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 5 2022

A=1/2²+1/3²+1/4²+1/5²+...+1/2022²
Dễ thấy A > 1/2.3+1/3.4+1/4.5+1/5.6+...+1/2022.2023 = B
Và A < 1/1.2+1/2.3+1/3.4.5+1/4.5+...+1/2021.2022 = C
Ta có B = 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/2022 - 1/2023
 B = 1/2 - 1/2023 > 1/2
C = 1- 1/2 + 1/2 - 1/3 +.... + 1/2021 - 1/2022
= 1-1/2022 < 1 
Vậy 1 > C > A > B > 1/2
Hay 1 >A>1/2

Suy ra A không phải là số tự nhiên.

Bạn muốn dạy kèm hoặc giải đáp mọi thắc mắc liên quan tới toán thì có thể liên hệ nhé

12 tháng 5 2016

\(\left(1-\frac{1}{2}\right)\times\left(1-\frac{1}{3}\right)\times\left(1-\frac{1}{4}\right)\times.....\times\left(1-\frac{1}{99}\right)\times\left(1-\frac{1}{100}\right)\)

\(=\frac{1}{2}\times\frac{2}{3}\times\frac{3}{4}\times.....\times\frac{98}{99}\times\frac{99}{100}\)

\(=\frac{1}{100}\)

Chúc bạn học tốtok

12 tháng 5 2016

Thank you verry much much lắm

20 tháng 4 2021

Đóng góp j vậy ạ

NV
21 tháng 4 2021

\(2^2< 2.3\Rightarrow\dfrac{1}{2^2}>\dfrac{1}{2.3}=\dfrac{1}{2}-\dfrac{1}{3}\)

Tương tự: \(\dfrac{1}{3^2}>\dfrac{1}{3}-\dfrac{1}{4}\) ; \(\dfrac{1}{4^2}>\dfrac{1}{4}-\dfrac{1}{5}\) ; ....; \(\dfrac{1}{100^2}>\dfrac{1}{100}-\dfrac{1}{101}\)

Do đó:

\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{100^2}>\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{100}-\dfrac{1}{101}\)

\(\Leftrightarrow\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{100^2}>\dfrac{1}{2}-\dfrac{1}{101}\)

\(\Leftrightarrow\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{100^2}>\dfrac{99}{202}\)

3 tháng 6 2019

Ta có : \(\frac{1}{2}+\frac{2}{3}+..+\frac{99}{100}\)

\((1-\frac{1}{2})+(1-\frac{1}{3})+...+(1-\frac{99}{100})\)(100 cặp số )

\(\left(1+1+1+...+1\right)-\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)(100 số hạng 1)

\(1\times100-\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+..+\frac{1}{100}\right)\)

\(100-\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\right)\)

=> 100-(1+1/2+1/3+...+1/100) = 1/2+2/3+3/4+...+99/100

3 tháng 6 2019

Bạn cố giải cho mình dễ hiểu hơn ko?

Y
28 tháng 3 2019

\(3B=1-\frac{2}{3}+\frac{3}{3^2}-\frac{4}{3^3}+...+\frac{99}{3^{98}}-\frac{100}{3^{99}}\)

\(B=\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}\)

\(\Rightarrow4B=3B+B=1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}-\frac{100}{3^{100}}\)

+ Đặt \(M=1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}\)

\(3M=3-1+\frac{1}{3}-\frac{1}{3^2}+...+\frac{1}{3^{97}}-\frac{1}{3^{98}}\)

\(\Rightarrow4M=3M+M=3-\frac{1}{3^{99}}\)

\(\Rightarrow M=\frac{3}{4}-\frac{1}{3^{99}\cdot4}\)

\(\Rightarrow4B=M-\frac{100}{3^{100}}=\frac{3}{4}-\frac{1}{3^{99}\cdot4}-\frac{100}{3^{100}}\)

\(\Rightarrow B=\frac{3}{16}-\frac{1}{3^{99}\cdot16}-\frac{100}{3^{100}\cdot4}\) \(\Rightarrow B< \frac{3}{16}\)

Y
28 tháng 3 2019

a) \(2A=1-\frac{1}{2}+\frac{1}{2^2}-\frac{1}{2^3}+\frac{1}{2^4}-\frac{1}{2^5}\)

\(A=\frac{1}{2}-\frac{1}{2^2}+\frac{1}{2^3}-\frac{1}{2^4}+\frac{1}{2^5}-\frac{1}{2^6}\)

\(\Rightarrow3A=2A+A=1-\frac{1}{2^6}\)

\(\Rightarrow A=\frac{1}{3}-\frac{1}{2^6\cdot3}< \frac{1}{3}\) ( đpcm )

22 tháng 7 2023

1/

\(N=1.\left(2-1\right)+2\left(3-1\right)+3\left(4-1\right)+...+99\left(100-1\right)=\)

\(=\left(1.2+2.3+3.4+...+99.100\right)-\left(1+2+3+...+99\right)=\)

Đặt 

\(A=1.2+2.3+3.4+...+99.100\)

\(3A=1.2.3+2.3.3+3.4.3+...+99.100.3=\)

\(=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+99.100.\left(101-98\right)=\)

\(=1.2.3-1.2.3+2.3.4-2.3.4+3.4.5-...-98.99.100+99.100.101=\)

\(=99.100.101\Rightarrow A=\dfrac{99.100.101}{3}=33.100.101\)

Đặt

\(B=1+2+3+...+99=\dfrac{99.\left(1+99\right)}{2}=4950\)

\(\Rightarrow N=A-B\)

2/

Số hạng cuối cùng là 10000 hoặc 1000000 mới làm được

\(A=1^2+2^2+3^2+...+100^2\) 

Tính như câu 1

3/ Làm như bài 4

4/

\(S=1^2+3^2+5^2+...+99^2=\)

\(=1.\left(3-2\right)+3\left(5-2\right)+5\left(7-2\right)+...+99\left(101-2\right)=\)

\(=\left(1.3+3.5+5.7+...+99.101\right)-2\left(1+3+5+...+99\right)\)

Đặt

\(B=1+3+5+...+99=\dfrac{50.\left(1+99\right)}{2}=2500\) 

Đặt

\(A=1.3+3.5+5.7+...+99.101\)

\(6A=1.3.6+3.5.6+3.7.6+...+99.101.6=\)

\(=1.3.\left(5+1\right)+3.5.\left(7-1\right)+5.7.\left(9-3\right)+...+99.101.\left(103-97\right)=\)

\(=1.3+1.3.5-1.3.5+3.5.7-3.5.7+5.7.9-...-97.99.101+99.101.103=\)

\(=3+99.101.103\Rightarrow A=\dfrac{3+99.101.103}{6}\)

\(\Rightarrow S=A-2B\)

GH
22 tháng 7 2023

Bài 1:

\(N=1^2+2^2+3^3+...+99^2\)

\(N=1.1+2.2+3.3+...+99.99\)

\(N=1.\left(2-1\right)+2.\left(3-1\right)+3.\left(4-1\right)+...+99.\left(100-1\right)\)

\(N=1.2-1+2.3-2+3.4-3+...+99.100-99\)

\(N=\left(1.2+2.3+3.4+...+99.100\right)-\left(1+2+3+...+99\right)\)

Đặt \(\left\{{}\begin{matrix}A=1.2+2.3+3.4+...+99.100\\B=1+2+3+...+99\end{matrix}\right.\)

+) Tính \(A=1.2+2.3+3.4+...+99.100\)

Ta có:

\(3A=1.2.3+2.3.3+3.4.3+...+99.100.3\)

\(3A=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+99.100.\left(101-98\right)\)

\(3A=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+99.100.101-98.99.100\)

\(3A=99.100.101\)

\(\Rightarrow A=\dfrac{99.100.101}{3}=333300\)

+) Tính \(B=1+2+3+...+99\)

\(B\) có số số hạng là: \(\dfrac{99-1}{1}\) + 1 = 99 (số hạng)

\(\Rightarrow B=\dfrac{\left(99+1\right).99}{2}=4950\)

\(\Rightarrow N=A-B=333300-4950=328350\)

\(\Rightarrow N=328350\)

 

 

7 tháng 7 2019

a) A = 100- 992 + 982 - 972 + ... + 22 - 12

A = (1002 - 992) + (982 - 972) + ... + (22 - 12)

A = (100 - 99)(100 + 99) + (98 - 97)(98 + 97) + ... + (2 - 1)(2 + 1)

A = 1. 199 + 1. 195 + ... + 1.3

A = 199 + 195 + ... + 3

A = (199 + 3)[(199 - 3) : 4 + 1] : 2

A = 202 . 50 : 2

A = 5050

b) B = (202 + 182 + 162 + ... + 22) - (192 + 172 + 152 + ... + 12)

B = 202 + 182 + 162 + ... + 22 - 192 - 173 - 152 - ... - 12)

B = (202 - 192) + (182 - 172) + (162 - 152)  + ... + (22 - 12)

B = (20 - 19)(20 + 19) + (18 - 17)(18 + 17) + ... + (2 - 1)(2 + 1)

B = 1. 39 + 1.35 + ... + 1.3

B = 39 + 35 + ... + 3

B = (39 + 3)[(39 - 3) : 4 + 1] : 2

B = 42 . 10 : 2

B = 210

7 tháng 7 2019

#)Giải :

a)\(A=100^2-99^2+98^2-97^2+...+2^2-1\)

\(A=\left(100-99\right)+\left(98-97\right)+...+\left(2-1\right)\)

\(A=100+99+98+...+2+1\)

\(A=\frac{\left(1+100\right)100}{2}=5050\)

b)\(B=\left(20^2+18^2+16^2+...+2^2\right)-\left(19^2+17^2+15^2+...+1^2\right)\)

\(B=20^2-19^2+18^2-17^2+...+2^2-1\)

Giờ trở thành dạng của ý a) rùi nhé, tương tự mak làm theo

c)\(C=\left(-1\right)^n.\left(-1\right)^{2n+1}.\left(-1\right)^{n+1}\)

\(C=\left(-1\right)^n.\left(-1\right)^2.\left(-1\right)^n.\left(-1\right).\left(-1\right)^n.\left(-1\right)\)

\(C=\left[\left(-1\right)^n.\left(-1\right)^n.\left(-1\right)^n\right].1.\left(-1\right).\left(-1\right)\)

\(C=\left(-1\right)^n.1.1\)

\(C=\left(-1\right)^n\)

14 tháng 7 2019

Ta có:

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}\)

\(=\frac{99}{100}\)

Ta có: \(\left(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{99.101}\right).x=\frac{3}{4}\)

\(2.\left(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{99.101}\right).x=2.\frac{3}{4}\)

\(\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{99.101}\right).x=\frac{3}{2}\)

\(\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\right).x=\frac{3}{2}\)

\(\left(1-\frac{1}{101}\right).x=\frac{3}{2}\)

\(\frac{100}{101}.x=\frac{3}{2}\)

\(x=\frac{3}{2}:\frac{100}{101}\)

\(x=\frac{303}{200}\)