Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)
\(1+\frac{1}{2}-\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
\(1-\frac{1}{100}< 1\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}< 1\)
Trùng hợp ghê là chiều nay mình cũng thi Toán nè!
Chúc bạn thi tốt và bạn hãy chúc mình thi tốt bằng 1 cái k nha!
H = 2012 - 1 - ( \(\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+...+99}\))
= 2011 - ( \(\frac{1}{3}+\frac{1}{6}+...+\frac{1}{\left(99+1\right).\left[\left(99-1\right):1+1\right]:2}\)
= 2011 - ( \(\frac{1}{3}+\frac{1}{6}+...+\frac{1}{4950}\))
= 2011 - 2.( \(\frac{1}{6}+\frac{1}{12}+...+\frac{1}{9900}\))
= 2011 - 2.(\(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\))
= 2011 - 2.( \(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\))
= 2011 - 2.(\(\frac{1}{2}-\frac{1}{100}\)) = 2011 - 2.\(\frac{49}{100}\)= 2011 - \(\frac{49}{50}\)= \(\frac{100501}{50}\)
\(H=2012-\left(1+\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+3+...+99}\right)\)
\(=2012-\left(1+\frac{1}{2\left(2+1\right):2}+\frac{1}{3\left(3+1\right):2}+...+\frac{1}{99\left(99+1\right):2}\right)\)
\(=2012-\left(\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{99.100}\right)\)
\(=2012-2\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{2}{99.100}\right)\)
\(=2012-2\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\right)\)
\(=2012-2\left(1-\frac{1}{100}\right)\)
\(=2012-2\cdot\frac{99}{100}\)
\(=2012-\frac{99}{50}\)
\(=\frac{100501}{50}\)
D = 1.2 + 2.3 + 3.4 + ... + 99.100
=> 3D = 1.2.3 + 2.3.3 + 3.4.3 + ... + 99 . 100 .3
= 1.2.3 + 2.3.(4 - 1) + 3.4.(5 - 2) + .... + 99 . 100. (101 - 98)
= 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ... + 99.100.101 - 98.99.100
= 99.100.101
= 999900
=> D = 999900 : 3
= 333300
\(D-1=\left(1.2+2.3+...+99.100\right)\)
\(3\left(D-1\right)=1.2.3+2.3\left(4-1\right)+3.4\left(5-2\right)+...+99.100\left(101-98\right)\)
\(3\left(D-1\right)=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+99.100.101-98.99.100\)
\(3\left(D-1\right)=99.100.101\)
\(D-1=\frac{99.100.101}{3}=333300\Leftrightarrow D=333300+1=333301\)
\(\left(1-\frac{1}{2}\right)\times\left(1-\frac{1}{3}\right)\times\left(1-\frac{1}{4}\right)\times.....\times\left(1-\frac{1}{99}\right)\times\left(1-\frac{1}{100}\right)\)
\(=\frac{1}{2}\times\frac{2}{3}\times\frac{3}{4}\times.....\times\frac{98}{99}\times\frac{99}{100}\)
\(=\frac{1}{100}\)
Chúc bạn học tốt
Thank you verry much much lắm