cho tam giác ABC có BC=2AB.Gọi M là trung điểm của BC
N là trung điểm của BM
Trên tia đối của tia NA lấy điểm E sao cho AN=EN. Chứng minh:
a) tam giác NAB=tam giác NEM
b) Tam giác MAB là tam giác cân
c) M là trọng tâm của tam giác AEC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔNAB và ΔNEM có
NA=NE(gt)
\(\widehat{ANB}=\widehat{ENM}\)(hai góc đối đỉnh)
NB=NM(N là trung điểm của BM)
Do đó: ΔNAB=ΔNEM(c-g-c)
b) Ta có: BC=2AB(gt)
mà BC=2BM(M là trung điểm của BC)
nên AB=BM
Xét ΔBAM có BA=BM(cmt)
nên ΔBAM cân tại B(Định nghĩa tam giác cân)
a: Xét ΔNAB và ΔNEM có
NA=NE
\(\widehat{ANB}=\widehat{ENM}\)
NB=NM
Do đó:ΔNAB=ΔNEM
b: Xét ΔMAB có BA=BM
nên ΔBAM cân tại B
c: Xét ΔAEC có
CN là đường trung tuyến
CM=2/3CN
Do đó: M là trọng tâm của ΔAEC
xét tam giác NAB và tam giác NEm , có
AN=NE
MN=NB
góc ANB = góc ANB
=> TAM GIÁC NAB = TAM GIÁC NEM (c.g.c)
Rất bí
xét tam giác NAB và tam giác NEM , có
AN=NE
MN=NB
góc ANB = góc ANB
=> TAM GIÁC NAB = TAM GIÁC NEM (c.g.c)
a) Xét tam giác NAB và tam giác NEM có AN=EN; BN=MN; góc ENM =góc BNA =>2 tam giác bằng nhau b)ta có BC=2Ab => Bc/2 = AB => BM=cm=ma =>tam giác MAb cân tại b
xét tam giác NAB và tam giác NEm , có
AN=NE
MN=NB
góc ANB = góc ANB
=> TAM GIÁC NAB = TAM GIÁC NEM (c.g.c)