này help me giúp tớ với nhanh lên nhé tớ cần nộp ngay
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{1}{1\times2}+\dfrac{1}{2\times3}+\dfrac{1}{3\times4}+\dfrac{1}{4\times5}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}\)
\(=1-\dfrac{1}{5}\)
\(=\dfrac{4}{5}\)
Các số đó bằng nhau C = D = E
Vì các số đó chỉ thay đổi vị trí và số thứ tự
Nếu đúng k nha!
À quên mất tớ chưa nói là phải có trước 16:00 ngày 24 / 8 / 2016. Nhanh lên, ngày mai mà tớ chưa có đáp số là tớ phải làm thêm 5 bài nâng cao khác đó
1/6*3+1/6*9+1/9*12+........+1/30*33
=(1/3-1/6)+(1/6-1/9)+(1/9-1/12)+........+(1/30-1/33)
=1/3-1/6+1/6-1/9+1/9-1/12+........+1/30-1/33
=1/3-1/33
=10/33
nho k cho mink nha
CHUC BAN HOC GIOI !
Gợi ý: 18 = 3.6
54 = 6.9
108 = 9.12
.............
990 = 30.33
Gấp 3 lần R rồi dùng sai phân hữu hạn.
Tự làm tiếp nhé!!!
ê,câu lớp 9 trả lời đk ko ,đag nghĩ vắt óc mà ko ta,chán quá ,à ,ddaag định đăng lên
làm ơn giải hộ tớ ,huhu,năm nay lên lớp 9 nhưng cô cho bài kiểu quái gì ấy ,chắc nâng cao
thôi câu hỏi dễ thì có khắp nơi chỉ cần đợi
nhưng em mà đăng câu hỏi thế này lên thì chie có ăn cái vé bao cáo thôi nhá :)))))
Chứng minh chiều thuận:
Giả sử có tam giác ABC cân tại A, đương nhiên trung tuyến và phân giác kẻ từ A của tam giác này trùng nhau. Mà trọng tâm D thuộc trung tuyến kẻ từ A, giao điểm các đường phân giác trong E thuộc phân giác trong kẻ từ A nên AD, AE trùng nhau, do đó A, D, E thẳng hàng.
Chứng minh chiều đảo:
Giả sử A, D, E thẳng hàng. Dễ thấy rằng khi đó AD, AE lần lượt là trung tuyến và phân giác trong của tam giác ABC. Mà A, D, E thẳng hàng \(\Rightarrow AD\equiv AE\), do đó tam giác ABC cân tại A (Dấu hiệu nhận biết)
À không, xin lỗi bạn, bài đó mình làm lộn đề đó. Bài này mới đúng nhé:
thuận: (giả sử tam giác ABC cân tại A):
Khi đó \(\widehat{ABC}=\widehat{ACB}\). Mà BD, CD là 2 trung tuyến kẻ từ B, C nên \(BD=CD\) \(\Rightarrow\widehat{DBC}=\widehat{DCB}\). Từ đó dễ thấy \(\widehat{DBA}=\widehat{DCA}\), mà BE, CE là các phân giác của \(\widehat{DBA},\widehat{DCA}\) nên \(\widehat{DBE}=\widehat{DCE}\). Từ đây dễ thấy \(\widehat{EBC}=\widehat{ECB}\) \(\Rightarrow EB=EC\). Do đó, E nằm trên đường trung trực của đoạn BC.
Mà AD chính là trung trực của BC (Do tam giác ABC cân tại A có AD là trung tuyến) \(\Rightarrow E\in AD\Rightarrowđpcm\)
đảo: (giả sử A,D,E thẳng hàng)
Ta thấy AD chính là trung trực của đoạn BC, mà A,D,E thẳng hàng nên E thuộc trung trực của BC \(\Rightarrow EB=EC\Rightarrow\widehat{EBC}=\widehat{ECB}\)
Đồng thời \(\widehat{DBC}=\widehat{DCB}\) , từ đó \(\Rightarrow\widehat{DBE}=\widehat{DCE}\)
Mà BE, CE lần lượt là phân giác của \(\widehat{DBA},\widehat{DCA}\) nên \(\widehat{DBA}=\widehat{DCA}\). Bằng phép cộng góc, ta dễ dàng suy ra \(\widehat{ABC}=\widehat{ACB}\) \(\Rightarrow\Delta ABC\) cân tại A.
Khanh ơi, mình k cho bạn rồi đấy. Giải cho mình bài toán đó đi. Nhanh lên nhé, mình cần gấp lắm😢