cho a>=4vàb>=4 chứng minh rằng a^2+b^2+ab>=6(a+b)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có a> 2 và b>2 nên a(b-2)>0 và b(a-2) >0.
Vậy a(b-2)+b(a-2) >0 <=> 2[ab -a -b] >0 <=> ab > a+ b
Xét : 2ab-2.(a+b)
= 2ab-2a-2b
= (ab-2a)+(ab-2b)
= a.(b-2)+b.(a-2)
Vì a>2 ; b>2 => a-2 > 0 ; b-2 > 0
=> a.(b-2)+b.(a-2) > 0
<=> 2ab > 2.(a+b)
<=> ab > a+b
Tk mk nha
BĐT <=> 2a\(^2\)+ 2b\(^2\)+2ab >= 12(a+b)
<=> (a+b)\(^2\)+a\(^2\)+b\(^2\) - 12(a+b) >=0
<=> (a+b)\(^2\) -12(a+b) + 36 + a\(^2\)+b\(^2\) >=36
<=> (a+b-6)\(^2\)+a\(^2\)+b\(^2\)>=36
với a,b>=4
=> a\(^2\)>= 16 , b\(^2\)>=16 , (a+b-6)\(^2\)>=4
=> BĐT được chứng minh
3. abc > 0 nên trog 3 số phải có ít nhất 1 số dương.
Vì nếu giả sử cả 3 số đều âm => abc < 0 => trái giả thiết
Vậy nên phải có ít nhất 1 số dương
Không mất tính tổng quát, giả sử a > 0
mà abc > 0 => bc > 0
Nếu b < 0, c < 0:
=> b + c < 0
Từ gt: a + b + c < 0
=> b + c > - a
=> (b + c)^2 < -a(b + c) (vì b + c < 0)
<=> b^2 + 2bc + c^2 < -ab - ac
<=> ab + bc + ca < -b^2 - bc - c^2
<=> ab + bc + ca < - (b^2 + bc + c^2)
ta có:
b^2 + c^2 >= 0
mà bc > 0 => b^2 + bc + c^2 > 0
=> - (b^2 + bc + c^2) < 0
=> ab + bc + ca < 0 (vô lý)
trái gt: ab + bc + ca > 0
Vậy b > 0 và c >0
=> cả 3 số a, b, c > 0
1.a, Ta có: \(\left(a+b\right)^2\ge4a>0\)
\(\left(b+c\right)^2\ge4b>0\)
\(\left(a+c\right)^2\ge4c>0\)
\(\Rightarrow\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2\ge64abc\)
Mà abc=1
\(\Rightarrow\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2\ge64\)
\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(a+c\right)\ge8\left(đpcm\right)\)
nhân 4 vào 2 vế,,,cm tuong đương
4a^2+4ab+4b^2=2(a+b)^2+2(a2+b2)
áp dụng 2(a^2+b^2)>=(a+b)^2
=> đpcm
Xét VT = 1/ab + 1/(a² + b²) = 1/2ab + 1/(a² + b²) + 1/2ab
Áp dụng bđt: 1/x + 1/y ≥ 4/(x + y) với x, y >0 và với a + b = 1 ta có:
1/2ab + 1/(a² + b²) ≥ 4/(2ab + a² + b²) = 4/(a + b)² = 4
Áp dụng bđt 4xy ≤ (x + y)² ta có:
1/2ab = 2/4ab ≥ 2/(a + b)² = 2
=> VT ≥ 4 + 2 = 6
Dấu "=" xảy ra khi a = b và a + b = 1 nên a = b = ½