K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 11 2015

bài này giải thế này nhé

Áp dụng bất đẳng thức 

\(a^3+b^3\ge ab\left(a+b\right)\)\(a^3+b^3+abc\ge ab\left(a+b\right)+abc=ab\left(a+b+c\right)\)

Câu 1. Chứng minh √7 là số vô tỉ. Câu 2. a) Chứng minh: (ac + bd)2 + (ad – bc)2 = (a2 + b2)(c2 + d2) b) Chứng minh bất dẳng thức Bunhiacôpxki: (ac + bd)2 ≤ (a2 + b2)(c2 + d2) Câu 3. Cho x + y = 2. Tìm giá trị nhỏ nhất của biểu thức: S = x2 + y2. Câu 4. a) Cho a ≥ 0, b ≥ 0. Chứng minh bất đẳng thức Cauchy: b) Cho a, b, c > 0. Chứng minh rằng: c) Cho a, b > 0 và 3a + 5b = 12. Tìm giá trị lớn nhất của tích P =...
Đọc tiếp

Câu 1. Chứng minh √7 là số vô tỉ.

Câu 2.

a) Chứng minh: (ac + bd)2 + (ad – bc)2 = (a2 + b2)(c2 + d2)

b) Chứng minh bất dẳng thức Bunhiacôpxki: (ac + bd)2 ≤ (a2 + b2)(c2 + d2)

Câu 3. Cho x + y = 2. Tìm giá trị nhỏ nhất của biểu thức: S = x2 + y2.

Câu 4.

a) Cho a ≥ 0, b ≥ 0. Chứng minh bất đẳng thức Cauchy:

b) Cho a, b, c > 0. Chứng minh rằng:

c) Cho a, b > 0 và 3a + 5b = 12. Tìm giá trị lớn nhất của tích P = ab.

Câu 5. Cho a + b = 1. Tìm giá trị nhỏ nhất của biểu thức: M = a3 + b3.

Câu 6. Cho a3 + b3 = 2. Tìm giá trị lớn nhất của biểu thức: N = a + b.

Câu 7. Cho a, b, c là các số dương. Chứng minh: a3 + b3 + abc ≥ ab(a + b + c)

Câu 8. Tìm liên hệ giữa các số a và b biết rằng: |a + b| > |a - b|

Câu 9.

a) Chứng minh bất đẳng thức (a + 1)2 ≥ 4a

b) Cho a, b, c > 0 và abc = 1. Chứng minh: (a + 1)(b + 1)(c + 1) ≥ 8

Câu 10. Chứng minh các bất đẳng thức:

a) (a + b)2 ≤ 2(a2 + b2)

b) (a + b + c)2 ≤ 3(a2 + b2 + c2)

2
10 tháng 11 2017

Câu 4:

a) C/m tương đương

\(\dfrac{a+b}{2}\ge\sqrt{ab}\) \(\Leftrightarrow a+b-2\sqrt{ab}\ge0\)

\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)\ge0\) => luôn đúng

=> \(\dfrac{a+b}{2}\ge\sqrt{ab}\Rightarrowđpcm\)

b) \(\dfrac{bc}{a}+\dfrac{ca}{b}+\dfrac{ab}{c}\ge a+b+c\)

Áp dụng BĐT: \(\dfrac{x}{y}+\dfrac{y}{x}\ge2\)

+) \(\dfrac{bc}{a}+\dfrac{ba}{c}=b\left(\dfrac{c}{a}+\dfrac{a}{c}\right)\ge2b\)

+) \(\dfrac{ca}{b}+\dfrac{cb}{a}=c\left(\dfrac{a}{b}+\dfrac{b}{a}\right)\ge2c\)

+) \(\dfrac{ab}{c}+\dfrac{ac}{b}=a\left(\dfrac{b}{c}+\dfrac{c}{b}\right)\ge2a\)

Cộng vế vs vế ta có:

\(2\left(\dfrac{bc}{a}+\dfrac{ca}{b}+\dfrac{ab}{c}\right)\ge2\left(a+b+c\right)\)

\(\Leftrightarrow\dfrac{bc}{a}+\dfrac{ca}{b}+\dfrac{ab}{c}\ge a+b+c\Rightarrowđpcm\)

c) Áp dụng BĐT Cô-si cho 2 số không âm ta có:

\(12^2=\left(3a+5b\right)^2\ge4.3a.5b=60ab\)

=> \(ab\le\dfrac{12}{5}\)

Vậy GTLN của P là \(\dfrac{12}{5}\)

Dấu ''=" xảy ra khi \(3a=5b\), từ đó ta có hệ

\(\left\{{}\begin{matrix}3a=5b\\3a+5b=12\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=\dfrac{6}{5}\end{matrix}\right.\)

11 tháng 11 2017

Câu 10:

a) \(\left(a+b\right)^2\le2\left(a^2+b^2\right)\)

\(\Leftrightarrow a^2+2ab+b^2-2a^2-2b^2\le0\)

\(\Leftrightarrow-\left(a^2-b^2\right)\le0\) => luôn đúng

\(\Rightarrow\left(a+b\right)^2\le2a^2+2b^2\Rightarrowđpcm\)

Câu 6: 

a: \(\left(a+1\right)^2>=4a\)

\(\Leftrightarrow a^2+2a+1-4a>=0\)

\(\Leftrightarrow a^2-2a+1>=0\)

\(\Leftrightarrow\left(a-1\right)^2>=0\)(luôn đúng)

b: \(\left\{{}\begin{matrix}a+1\ge2\sqrt{a}\\b+1\ge2\sqrt{b}\\c+1\ge2\sqrt{c}\end{matrix}\right.\)(Theo BĐT COSI)

\(\Leftrightarrow\left(a+1\right)\left(b+2\right)\left(c+1\right)\ge8\sqrt{abc}=8\)

12 tháng 12 2016

ta có:\(\left(a+2b\right)^2=\left(1.a+\sqrt{2}.\sqrt{2}b\right)^2\le\left(1+2\right)\left(a^2+2b^2\right)\)( bđt bunhiacopxki)

\(\left(a+2b\right)^2\le3.3c^2=9c^2\)\(a+2b\le3c\)

lại có:\(\frac{1}{a}+\frac{2}{b}=\frac{1}{a}+\frac{1}{b}+\frac{1}{b}\ge\frac{9}{a+2b}\ge\frac{9}{3c}=\frac{3}{c}\)

dấu = xảyra khi.... a+2b2=3c2(:v)

13 tháng 12 2016

cảm ơn bạn haha