Cho ΔABC vg tại C, K là trung điểm BC . Kẻ KI vg góc với AB tại I. Chứng minh AI2 - BI2 = AC2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác AMDN có
góc AMD=góc AND=góc MAN=90 độ
=>AMDN là hình chữ nhật
b: Xét ΔABC có
M là trung điểm của BC
MN//AB
=>N là trung điểm của AC
c: Xét tứ giác ADCE có
N là trung điểm chung của AC và DE
Do đó: ADCE là hình bình hành
mà DA=DC
nên ADCE là hình thoi
a) Xét \(\Delta\)AKBvà \(\Delta\)AKC có
AK là cạnh chung
AB = AC ( gt )
\(\widehat{BAK}\) = \(\widehat{KAC}\) ( vì K là trung điểm của BC )
\(\Rightarrow\) \(\Delta\)AKB = \(\Delta\)AKC
b) \(\rightarrow\) KB = KC ( 2 cạnh tương ứng )
mà \(\widehat{AKB}+\widehat{AKC}=180^O\) ( 2 góc kề bù )
\(\Rightarrow\) KB = KC = 180 : 2 = 90o
\(\Rightarrow\) AK \(\perp\) BC
c) bn ghi lỗi
d) k lm đc vì tùy thuộc câu c nha bn
Xét tam giác BKI vuông tại I có:
\(BK^2=KI^2+BI^2\left(Pytago\right)\Rightarrow BI^2=BK^2-KI^2\left(1\right)\)
Xét tam giác AIK vuông tại I có:
\(AK^2=AI^2+IK^2\left(Pytago\right)\Rightarrow AI^2=AK^2-IK^2\left(2\right)\)
Xét tam giác ACK vuông tại C có:
\(AK^2=AC^2+CK^2\left(Pytago\right)\Rightarrow AC^2=AK^2-CK^2\left(3\right)\)
\(\left(1\right),\left(2\right)\Rightarrow AI^2-BI^2=\left(AK^2-IK^2\right)-\left(BK^2-IK^2\right)=AK^2-BK^2\)
Mà \(BK=CK\Rightarrow BK^2=CK^2\) (do K là trung điểm BC)
\(\Rightarrow AI^2-BI^2=AK^2-CK^2=AC^2\)(do (3))
iem cảm ơn