K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 12 2022

a)  Xét \(\Delta\)AKBvà \(\Delta\)AKC có

           AK là cạnh chung

          AB      =  AC    ( gt )

          \(\widehat{BAK}\)  = \(\widehat{KAC}\)  ( vì K là trung điểm của BC )

\(\Rightarrow\)       \(\Delta\)AKB = \(\Delta\)AKC

b) \(\rightarrow\) KB = KC ( 2 cạnh tương ứng )

mà \(\widehat{AKB}+\widehat{AKC}=180^O\) ( 2 góc kề bù )

\(\Rightarrow\) KB = KC = 180 : 2 = 90

\(\Rightarrow\) AK \(\perp\) BC

c) bn ghi lỗi

d) k lm đc vì tùy thuộc câu c nha bn 

31 tháng 12 2021

a: Xét ΔAKB và ΔAKC có 

AK chung

KB=KC

AB=AC

Do đó: ΔAKB=ΔAKC

AH
Akai Haruma
Giáo viên
17 tháng 12 2020

Lời giải:

a) Xét tam giác AKB và AKC có:

AB=AC (giả thiết)

KB=KC (do K là trung điểm của BC)

AK chung

Do đó: \(\triangle AKB=\triangle AKC(c.c.c)\) (đpcm)

\(\Rightarrow \widehat{AKB}=\widehat{AKC}\). Mà \(\widehat{AKB}+\widehat{AKC}=\widehat{BKC}=180^0\). Do đó:

\(\widehat{AKB}=\widehat{AKC}=90^0\Rightarrow AK\perp BC\) (đpcm)

b) 

Ta thấy: \(EC\perp BC; AK\perp BC\) (đã cm ở phần a)

\(\Rightarrow EC\parallel AK\) (đpcm)

c) Vì tam giác ABC là tam giác vuông cân tại A nên \(\widehat{B}=45^0\)

Tam giác CBE vuông tại C có \(\widehat{B}=45^0\) \(\Rightarrow \widehat{E}=180^0-(\widehat{C}+\widehat{B})=180^0-(90^0+45^0)=45^0\)

\(\Rightarrow \widehat{E}=\widehat{B}\) nên tam giác CBE cân tại C. Do đó CE=CB (đpcm)

AH
Akai Haruma
Giáo viên
17 tháng 12 2020

Hình vẽ: undefined

Bài 1: Cho ΔABC, M là trung điểm của BC. Trên tia đối của tia MA lấy điểm E sao cho ME=MA. chứng minha/ ΔABM=ΔECMb/ AB//CEBài 2: Cho ΔABC vuông ở A và AB=AC. Gọi K là trung điểm của BCa/ Chứng minh : ΔAKB=ΔAKCb/ Chứng minh: AK vuông góc với BCc/ Từ C vẽ đường vuông góc với BC cắt đường thẳng AB tại E. Chứng minh EC//AKBài 3: Cho Δ ABC có AB=AC, M là trung điểm của BC. trên tia đối của tia MA lấy điểm D...
Đọc tiếp

Bài 1: Cho ΔABC, M là trung điểm của BC. Trên tia đối của tia MA lấy điểm E sao cho ME=MA. chứng minh

a/ ΔABM=ΔECM

b/ AB//CE

Bài 2: Cho ΔABC vuông ở A và AB=AC. Gọi K là trung điểm của BC

a/ Chứng minh : ΔAKB=ΔAKC

b/ Chứng minh: AK vuông góc với BC

c/ Từ C vẽ đường vuông góc với BC cắt đường thẳng AB tại E. Chứng minh EC//AK

Bài 3: Cho Δ ABC có AB=AC, M là trung điểm của BC. trên tia đối của tia MA lấy điểm D sao cho AM= MA

a/ Chứng minh ΔABM=ΔDCM

b/ Chứng minh AB//DC

c/ Chứng minh AM vuông góc với BC

d/ Tìm điều kiện của ΔABC để góc ADC bằng 30o

Bài 4: Cho ΔABC vuông tại A có góc B=30o

a/ Tính góc C

b/ Vẽ tia phân giác của góc C cắt cạnh AB tại D

c/ TRên cạnh CB lấy điểm M sao cho CM=CA. Chứng minh ΔACD=ΔMCD

d/ Qua C vẽ đường thẳng xy vuông góc CA. Từ A kẻ đường thẳng song song với CD cắt xy ở K. Chứng minh : AK=CD

e/ Tính góc AKC.

Bài 5: Cho góc nhọn xOy. Trên tia Ox lấy điểm A, trên tia Oy lấy điểm B sao cho OA=OB. Trên tia Ax lấy điểm C, trên tia By lấy điểm D sao cho AC=Bd

a/ Chứng minh AD=BC

b/ Gọi E là giao điểm AD và BC. Chứng minhΔEAC=ΔEBD

c/ Chứng minh OE là phân giác của góc xOy

2
11 tháng 12 2016

Bài 1: Ta có hình vẽ sau:

B A C M E

a)Xét ΔABM và ΔECM có:

BM = CM (gt)

\(\widehat{AMB}=\widehat{EMC}\) (đỗi đỉnh)

MA = ME (gt)

=> ΔABM = ΔACM (c.g.c) (đpcm)

b) Vì ΔABM = ΔECM (ý a)

=> \(\widehat{MAB}=\widehat{MEC}\) (2 góc tương ứng)

mà 2 góc này lại ở vị trí so le trong nên

=> AB // CE (đpcm)

Bài 5: Ta có hình vẽ sau:

 

 

 

 

O A B D C x y E

a) Vì OA = OB (gt) và AC = BD (gt)

=> OC = OD

Xét ΔOAD và ΔOBC có:

OA = OB (gt)

\(\widehat{O}\) : Chung

OC = OD (cm trên)

=> ΔOAD = ΔOBC (c.g.c)

=> AD = BC (2 cạnh tương ứng)(đpcm)

b) Vì ΔOAD = ΔOBC(ý a)

=> \(\widehat{OBC}=\widehat{OAD}\)\(\widehat{ODA}=\widehat{OCB}\)

(những cặp góc tương ứng)

Xét ΔEAC và ΔEBD có:

\(\widehat{OBC}=\widehat{OAD}\) (cm trên)

AC = BD (gt)

\(\widehat{ODA}=\widehat{OCB}\) (cm trên)

=> ΔEAC = ΔEBD (g.c.g) (đpcm)

c) Vì ΔEAC = ΔEBD (ý b)

=> EA = EB (2 cạnh tương ứng)

Xét ΔOAE và ΔOBE có:

OA = OB (gt)

\(\widehat{OBC}=\widehat{OAD}\) (đã cm)

EA = EB (cm trên)

=> ΔOAE = ΔOBE (c.g.c)

=> \(\widehat{AOE}=\widehat{BOE}\) (2 góc tương ứng)

=> OE là phân giác của \(\widehat{xOy}\)

 

11 tháng 12 2016

Toán hình dài, bn k nên đăng nhiều bài 1 lúc

nên đăng từng bài thui nha!!!

19 tháng 12 2016

a)Xét tam giác AKB và tam giác AKC

Có:      AB=AC

          BK=KC

          AK chung

=>tam giác AKB=tam giác AKC

b)tam giác AKB=tam giác AKC

=>góc AKB=góc AKC

Mà hai góc này là 2 góc kề bù

=>góc AKB=góc AKC=90 độ

=>AK vuông góc với BC

c) tôi đang nghĩ nhé bn

 hjhj

 t tôi nhé

28 tháng 11 2023

Lời giải:

a) Xét tam giác AKB và AKC có:

AB=AC (giả thiết)

KB=KC (do K là trung điểm của BC)

AK chung

Do đó: △���=△���(�.�.�) (đpcm)

⇒���^=���^. Mà ���^+���^=���^=1800. Do đó:

���^=���^=900⇒��⊥�� (đpcm)

b) 

Ta thấy: ��⊥��;��⊥�� (đã cm ở phần a)

⇒��∥�� (đpcm)

c) Vì tam giác ABC là tam giác vuông cân tại A nên �^=450

Tam giác CBE vuông tại C có �^=450 ⇒�^=1800−(�^+�^)=1800−(900+450)=450

⇒�^=�^ nên tam giác CBE cân tại C. Do đó CE=CB (đpcm)

d mình ko biết

6 tháng 1 2021

a) vì K là trung điểm của BC nên

BK=CK=BC/2 ( tính chất)

xét tam giác AKB và tam giác AKC có

AB=AC ( gt)

AK chung

BK=CK( cmt)

⇒tg AKB=tg AKC      (1)

b) từ (1) ⇒góc AKB= góc AKC ( 2 GÓC TƯƠNG ỨNG)

mà góc AKB+ góc AKC= 180 độ ( 2 góc kề bù)

⇒  góc AKB = góc AKC = 180 độ/2 = 90 độ

⇒ AK ⊥ BC 

Mik mới làm được tó đây thôi. chúc cậu hok giỏi nha!!!hihi

 

 

a) Xét ΔAKB và ΔAKC có 

AB=AC(gt)

KB=KC(K là trung điểm của BC)

AK chung

Do đó: ΔAKB=ΔAKC(c-c-c)

b) Ta có: ΔABC vuông cân tại A(gt)

mà AK là đường trung tuyến ứng với cạnh đáy BC(K là trung điểm của BC)

nên AK là đường cao ứng với cạnh BC(Định lí tam giác cân)

hay AK⊥BC(đpcm)

c) Ta có: CE⊥CB(gt)

AK⊥BC(cmt)

Do đó: AK//CE(Định lí 1 từ vuông góc tới song song)

d) Xét ΔCEB vuông tại C có \(\widehat{B}=45^0\)(Số đo của một góc nhọn trong ΔABC vuông cân tại A)

nên ΔCEB vuông cân tại C(Dấu hiệu nhận biết tam giác vuông cân)

hay CE=CB(đpcm)

17 tháng 12 2017

a/ Ta có:  AB = AC (gt); BK = KC (vì K là trung điểm của BC); AK là cạnh chung

=>> tg AKB = tg AKC (c.c.c)

Ta có: AB = AC (gt) => tg ABC vuông cân tại A

mà K là trung điểm của BC

=>> AK là đường trung trực của tg ABC

=> AK\(\perp\) BC

b/ Ta có:  EC \(\perp BC\) (gt) và AK\(\perp BC\) (cmt)

=>> EC // AK

c/ AK là đường cao đồng thời là đường phân giác của tam giác ABC vuông cân tại A

=> \(\widehat{BAK}\) = \(\widehat{KAC}\) = 45 độ 

=> tg AKB vuông cân tại B => \(\widehat{KBA}=\widehat{BAK}\) (1)

Ta có: EC // AK (cmt) => \(\widehat{BAK}=\widehat{BEC}\) (2)

Từ (1) vả (2) => \(\widehat{KBA}=\widehat{BEC}\)

=> tg BCE cân tại C =>> CE = CB