K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 2 2022

p=2 thì p^2+2=6(loại vì 6 ko là số nguyên tố)
p=3 thì p^2+2=11(chọn vì 11 là số nguyên tố)
=>p^3+2=3^3+2=29 (là số nguyên tố)
p>3
vì p là số nguyên tố =>p ko chia hết cho 3 (1)
p thuộc Z =>p^2 là số chính phương (2)
từ (1),(2)=>p^2 chia 3 dư 1
=>p^2+2 chia hết cho 3 (3)
mặt khác p>3
=>p^2>9
=>p^2+2>11 (4)
từ (3),(4)=>p^2+2 ko là số nguyên tố (trái với đề bài)

Vậy ...

6 tháng 2 2022

....

sai r bạn ơi thầy tui chữa r

hiu

3 tháng 10 2017

Nếu n > 3 thì vì n là nguyên tố nên n chia cho 3 dư 1 hoặc 2 => \(n=3k\pm1\) 

Suy ra \(n^2+2=9k^2+3\) chia hết cho 3. Trái với giả thiết \(n^2+2\) là số nguyên tố.

Vậy n chỉ có thể bằng 3. Khi đó \(n;n^2+2;n^3+2\) lần lượt là \(3;11;29\) đều là số nguyên tố.

25 tháng 3 2020

etetrttymrturfgdfeeeyeeegguthkxgdzyyyzrzeeerrttytjjmetetetetethehtemeteteetu,o;/o

7lkyuxrxytwtqtwyer

7 tháng 9 2016

Do p nguyên tố nên:

+) Xét p = 2 ta có: p2 + 8 = 22 + 8 = 12 là hợp số (loại)

+) Xêt p = 3 ta có: p2 + 8 = 32 + 8 = 17 là nguyên tố (chọn)

+) Xét p > 3  => p = 3k + 1  hoặc  p = 3k + 2

Khi p = 3k + 1  => p2 + 8 = (3k + 1)2 + 8 = 9k2 + 3k + 1 + 8 = 9k2 + 3k + 9 = 3(3k2 + k + 3) chia hết cho 3  => p2 + 8 là hợp số (loại) 

Khi p = 3k + 2  => p2 + 8 = (3k + 2)2 + 8 = 9k2 + 6k + 4 + 8 = 9k2 + 6k + 12 = 3(3k2 + 2k + 4) chia hết cho 3  => p2 + 8 là hợp số (loại) 

=> p = 3 để p và p2 + 8 là nguyên tố 

Khi đó: p2 + 2 = 32 + 2 = 11 là nguyên tố

Vậy nếu p và p2 + 8 là nguyên tố thì p2 + 2 cũng nguyên tố.

7 tháng 4 2018

                   TH1:p<3

                   +Vì p<3;mà p là số nguyên tố =>p=2.

                   Với p=2 ta có:p3+2=23+2=8+2=10(là hợp số nên loại)

                   TH2:p>3

                   +vì p>3 nên=>p=6k+1 hoặc p=6k+5.

                   Với p=6k+1 ta có :p3+2=(6k+1)3+2=6k3+1+2=6k3+3:3(là  hợp số nên loại)

                   Với p=6k+5 ta có:p3+2=(6k+5)3+2=6k3+125+2=6k3+127(vì UCLN(6k3;127)=1=>6k3+127 là số nguyên tố nên nhận)

                                                          Vậy với p=6k+5 thì p3+2 cũng là số nguyên tố.