A=19^5+2015/19^5-1 và B=19^5+2014/19^5-2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
LẤY (2015/19^5-1)-(2014/19^5-2)=(2015*19^5-2*2015-2014*19^5+2014)/((19^5-10*(19^5-2)
=(19^5-2016)/((19^5-1)*(19^5-2)>0
HAY A>B
\(A=\frac{19^5-1+2017}{19^5-1}=1+\frac{2017}{19^5-1}\)
\(B=\frac{19^5+2015}{19^5-2}=\frac{19^5-2+2017}{19^5-2}=1+\frac{2017}{19^5-2}\)
\(\Rightarrow1+\frac{2017}{19^5-1}< 1+\frac{2017}{19^5-2}\)
\(\Rightarrow A< B\)
ta thấy:B>1
=>\(B=\frac{19^5+2015}{19^5-2}>\frac{19^5+2015+1}{19^5-2+1}=\frac{19^5+2016}{19^5-1}=A\Rightarrow B>A\)
vậy.....
Ta có: \(A=\frac{19^5+2016}{19^5-1}=\frac{19^5-1+2017}{19^5-1}=\frac{19^5-1}{19^5-1}+\frac{2017}{19^5-1}=1+\frac{2017}{19^5-1}\)
\(B=\frac{19^5+2015}{19^5-2}=\frac{19^5-2+2017}{19^5-2}=\frac{19^5-2}{19^5-2}+\frac{2017}{19^5-2}=1+\frac{2017}{19^5-2}\)
Vì \(\frac{2017}{19^5-1}< \frac{2017}{19^5-2}\Rightarrow1+\frac{2017}{19^5-1}< 1+\frac{2017}{19^5-2}\Rightarrow A< B\)
Vậy A < B
\(A=\frac{19^5+2016}{19^5-1}=\frac{\left(19^5-1\right)+2017}{19^5-1}=1+\frac{2017}{19^5-1}\)
\(B=\frac{19^5+2015}{19^5-2}=\frac{\left(19^5-2\right)+2017}{19^5-2}=1+\frac{2017}{19^5-2}\)
Vì \(19^5-1>19^5-2\) nên \(\frac{2017}{19^5-1}< \frac{2}{19^5-2}\)
\(\Rightarrow1+\frac{2017}{19^5-1}< 1+\frac{2017}{19^5-2}\)
Vậy \(A< B\)
Ta có: \(A=\dfrac{19^5+2016}{19^5-1}=1+\dfrac{2017}{19^5-1}\)
\(B=\dfrac{19^5+2015}{19^5-2}=1+\dfrac{2017}{19^5-2}\)
Vì \(\dfrac{2017}{19^5-1}< \dfrac{2017}{19^5-2}\Rightarrow1+\dfrac{2017}{19^5-1}< 1+\dfrac{2017}{19^5-2}\)
\(\Rightarrow A< B\)
Vậy A < B
\(A=\frac{19^5-1+2016}{19^5-1}=1+\frac{2016}{19^5-1}\)
\(B=\frac{19^5-2+2016}{19^5-2}=1+\frac{2016}{19^5-2}\)
\(19^5-1>19^5-2\Rightarrow\frac{2016}{19^5-1}<\frac{2016}{19^5-2}\Rightarrow1+\frac{2016}{19^5-1}<1+\frac{2016}{19^5-2}\)
=> A<B