K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 3 2023

a)

`1/1-1/2`

`=2/2-1/2`

`=1/2`

b)

`1/(1*2)+1/(2*3)`

`=1/1-1/2+1/2-1/3`

`=1/1-1/3`

`=3/3-1/3`

`=2/3`

c)

\(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{99\cdot100}\\ =\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\\ =\dfrac{1}{1}-\dfrac{1}{100}\\ =\dfrac{99}{100}\)

d) 

\(\dfrac{3}{1\cdot2}+\dfrac{3}{2\cdot3}+...+\dfrac{3}{99\cdot100}\) đề phải như thế này chứ nhỉ?

\(=\dfrac{1\cdot3}{1\cdot2}+\dfrac{1\cdot3}{2\cdot3}+...+\dfrac{1\cdot3}{99\cdot100}\\ =3\left(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{99\cdot100}\right)\\ =3\left(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\right)\\ =3\left(\dfrac{1}{1}-\dfrac{1}{100}\right)\\ =3\cdot\dfrac{99}{100}\\ =\dfrac{297}{100}\)

 

b: Tổng của N là:

\(\dfrac{49\cdot48}{2}=49\cdot24=1176\)

2 tháng 10 2021

chào nick thứ 2 đây

11 tháng 9 2015

cau hỏi tương tự ko có mà!!!!!!!!!!!!!!!!!!!!!!!!!!!!

23 tháng 1 2022

3C=1.2.3+2.3.(4-1)+3.4.(5-2)+...+2014.2015.(2016-2013)

3C=2014.2015.2016

C=2014.2015.2016:3

25 tháng 8 2017

Ta có : S = 1.2 + 2.3 + 3.4 + ..... + 32.33

=> 3S = 1.2.3 - 1.2.3 + 2.3.4 - 2.3.4 + ...... + 32.33.34

=> 3S = 32.33.34

=> S = \(\frac{32.33.34}{3}=11968\)

20 tháng 4 2016

C=1*2+2*3+3*4+...+98*99

C=2+6+12+...+9702

C=2+9702

C=9704

vay C=9704

D=(1*99+2*99+3*99+...+99*99)-(1*2+2*3+3*4+...+98*99)

D=(99+198+297+...+9801)-(2+6+12+...+9702)

D=(99+9801)-(2+9702)

D=9900-9704

D=196

vay D=196

ai di qua dong tinh thi nho h cho minh nhe

11 tháng 7 2016

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{2016.2017}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.....+\frac{1}{2016}-\frac{1}{2017}\)

\(=1-\frac{1}{2017}\)

\(=\frac{2016}{2017}\)

11 tháng 7 2016

                           \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2016.2017}\)

                       \(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2016}-\frac{1}{2017}\)

                       \(=1-\frac{1}{2017}\)

                        \(=\frac{2016}{2017}\)

                    Ủng hộ mk nha!!!

8 tháng 9 2018

Ta có : S = 1.2 + 2.3 + 3.4 + ..... + 99.100

=> 3S = 1.2.3 - 1.2.3 + 2.3.4 - 2.3.4 + .... + 99.100.101

=> 3S = 99.100.101

=> S = \(\frac{99.100.101}{3}=333300\)

NM
11 tháng 2 2021

ta xét

\(S\left(n\right)=1.2+2.3+..+n\left(n-1\right)\)

\(\Rightarrow3S\left(n\right)=1.2.3+2.3.3+..+3.n.\left(n-1\right)\)

\(\Leftrightarrow3S\left(n\right)=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+..+n\left(n-1\right)\left(n+1-\left(n-2\right)\right)\)

\(\Leftrightarrow3S\left(n\right)=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+..+n\left(n-1\right)\left(n+1\right)-n\left(n-1\right)\left(n-2\right)\)

\(\Leftrightarrow3S\left(n\right)=n\left(n-1\right)\left(n+1\right)\Rightarrow S\left(n\right)=\frac{n\left(n-1\right)\left(n+1\right)}{3}\)

Áp dụng ta có \(S\left(100\right)=\frac{99.100.101}{3}=333300\)

10 tháng 7 2016

ta có 
1=1 
1/1.2 =1-1/2 
1/2.3 1/2-1/3 
1/3.4 =1/3-1/4 
....... 
1/(99.100) =1/99 -1/100 
cộng theo vế các đẳng thức trên được 
S =1+1-1/2+1/2-1/3+1/3-1/4+...+1/99-1/100 
S =2-1/100

28 tháng 6 2021

\(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)

\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)

\(=\frac{1}{1}-\frac{1}{100}\)

\(=\frac{99}{100}\)

Vậy A = \(\frac{99}{100}\)