một hình chữ nhật có chiều dài 55m chiều rộng 36 m được chia thành những hình vuông có diện tích bằng nhau tính diện tích cạnh hình vuông lớn nhất trong các cách trên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi x (m) là cạnh hình hình vuông lớn nhất (x ∈ N*)
Ta có : \(55⋮x;36⋮x;x\) là lớn nhất
\(\Rightarrow x\in\text{Ư}CLN\left(55;36\right)\)
ta có :
\(55=5.11\\ 36=2^2.3^2\\ \Rightarrow\text{Ư}CLN\left(55;36\right)=1\)
vậy...
Gọi x là độ dài cạnh hình vuônglowns nhất có thể chia được ( x ϵ N*)
x=ƯCLN( 112,36)
112= 24 .7
36=22.32
⇒ x= ƯCLN( 112,36)=22=4
Vậy có thể chia được lớn nhất là 4m
Khi đó độ dài cạnh có: 112:4=28
36:4=9
Gọi x (m) là độ dài cạnh hình vuông lớn nhất có thể chia (x ∈ ℕ*)
⇒ x = ƯCLN(150; 90)
Ta có:
150 = 2.3.5²
90 = 2.3².5
⇒ x = ƯCLN(150; 90) = 2.3.5 = 30
Vậy độ dài cạnh lớn nhất có thể chia là 30 m
Gọi x (m) là độ dài cạnh hình vuông lớn nhất có thể chia (x ∈ ℕ*)
⇒ x = ƯCLN(150; 90)
Ta có:
150 = 2.3.5²
90 = 2.3².5
⇒ x = ƯCLN(150; 90) = 2.3.5 = 30
Vậy độ dài cạnh lớn nhất có thể chia là 30 m
Cạnh lớn nhất của hình vuông là ƯCLN(53; 36)
53 = 53
36 = 2².3²
ƯCLN(53; 36) = 1
Vậy cạnh lớn nhất của hình vuông có thể chia là 1 m
ƯCLN(150;90)=30
Diện tích HCN:
150 x 90 = 13500(m2)
Số hình vuông được chia:
13500 : (30 x 30)=15 (hình)
=> Độ dài hình vuông lớn nhất có cạnh 30m, có thể chia ra 15 hình như thế
Ta có:
53 là số nguyên tố
36=22.32
->36 và 53 không có thừa số nguyên tố chung.
->ƯCLN(36,53)=1
Vậy cạnh hình vuông lớn nhất =1m
Gọi độ dài hình vuông lớn nhất là x (m) (x∈ N*)
Theo đề bài 150 ⋮ x, 90 ⋮ x và x lớn nhất
x = ƯCLN (150;90)
150 = 2.3.52
90 = 2.32.5
ƯCLN (150; 90) = 2.3.5 = 30
x=30 (m)
Diện tích của hình chữ nhật là : 150.90 = 13500 (m2)
Diện tích của một hình vuông là: 30.30 =90 (m2)
Số hình vuông được chia là: 13500:90 = 15 hình vuông
Vậy độ dài hình vuông lớn nhất chia được là 30m, khi đó ta chia được 15 hình vuông
bạn vô đây d.violet.vn/uploads/resources/273/1334277/preview.swf
Lời giải:
Để chia hình chữ nhật thành những hình vuông cạnh $x$ m thì $x$ phải là ước chung của chiều dài và chiều rộng.
Hay $x$ là ước chung của $36, 55$
Để $x$ lớn nhất thì $x$ là $ƯCLN(36, 55)$ hay $x=1$
Vậy chia mảnh đất được thành những hình vuông có cạnh lớn nhất là $1$ m