K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
21 tháng 1 2022

Cho \(0< x< y\le z\le1\) và \(3x+2y+z\le4\). Tìm Max \(S=3x^2+2y^2+z^2\) - Hoc24

21 tháng 1 2022

Tham khảo

Khai triển Abel ta có:

\(S=\left(z-y\right)z+\left(y-x\right)\left(z+2y\right)+x\left(3x+2y+z\right)\)

\(\le\left(z-y\right).1+\left(y-x\right).3+4x=x+2y+z\)

\(=\left(1-1\right)z+\left(1-\dfrac{1}{3}\right)\left(2y+z\right)+\dfrac{1}{3}\left(3x+2y+z\right)\)

\(\le\dfrac{2}{3}.3+\dfrac{1}{3}.4=\dfrac{10}{3}\)

Dấu = xảy ra khi \(x=\dfrac{1}{3},y=z=1\)