\(0< x< y\le z\le1\)

và \(3x+2y+z\le4\)

...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
21 tháng 1 2022

Cho \(0< x< y\le z\le1\) và \(3x+2y+z\le4\). Tìm Max \(S=3x^2+2y^2+z^2\) - Hoc24

21 tháng 1 2022

Tham khảo

Khai triển Abel ta có:

\(S=\left(z-y\right)z+\left(y-x\right)\left(z+2y\right)+x\left(3x+2y+z\right)\)

\(\le\left(z-y\right).1+\left(y-x\right).3+4x=x+2y+z\)

\(=\left(1-1\right)z+\left(1-\dfrac{1}{3}\right)\left(2y+z\right)+\dfrac{1}{3}\left(3x+2y+z\right)\)

\(\le\dfrac{2}{3}.3+\dfrac{1}{3}.4=\dfrac{10}{3}\)

Dấu = xảy ra khi \(x=\dfrac{1}{3},y=z=1\)

7 tháng 3 2021

TH1: Nếu có 1 số bằng 0, giả sử là z, khi đó ta có \(x^4+y^4=1\)

và \(P=x^2+y^2\ge\sqrt{x^4+y^4}=1\)

Dấu '=' xảy ra khi 1 số =0, một số = \(\pm1\)

TH2: Nếu các số đều khác 0

Từ giả thiết => tồn tại tam giác ABC nhọn sao cho

\(x^2=\cos A,y^2=\cos B,z^2=\cos C\)

\(P=\cos A+\cos B+\cos C-\sqrt{2\cos A\cos B\cos C}\)

\(=1+4\sin\frac{A}{2}\sin\frac{B}{2}\sin\frac{C}{2}-\sqrt{2\cos A\cos B\cos C}\)

Ta chứng minh \(4\sin\frac{A}{2}\sin\frac{B}{2}\sin\frac{C}{2}\ge\sqrt{2\cos A\cos B\cos C}\)  (1)

Ta có (1) \(\Leftrightarrow8\sin^2\frac{A}{2}\sin^2\frac{B}{2}\sin^2\frac{C}{2}\ge\cos A\cos B\cos C\)

\(\Leftrightarrow\frac{8\sin^2\frac{A}{2}\sin^2\frac{B}{2}\sin^2\frac{C}{2}}{\sin A\sin B\sin C}\ge\frac{\cos A\cos B\cos C}{\sin A\sin B\sin C}\)

\(\Leftrightarrow\cot A\cot B\cot C\le\tan\frac{A}{2}\tan\frac{B}{2}\tan\frac{C}{2}\)

\(\Leftrightarrow\tan A\tan B\tan C\ge\cot\frac{A}{2}\cot\frac{B}{2}\cot\frac{C}{2}\)

\(\Leftrightarrow\tan A+\tan B+\tan C\ge\cot\frac{A}{2}+\cot\frac{B}{2}+\cot\frac{C}{2}\)  (2)

bđt (2) đúng vì \(\tan A+\tan B\ge2\cot\frac{C}{2}\)  và 2 bđt tương tự

Dấu '=' xảy ra khi tam giác đều \(\Leftrightarrow x^2=y^2=z^2=\frac{1}{2}\)

\(\Rightarrow P\ge1\)

Dấu '=' xảy ra khi 2 số =0, một số \(=\pm1\)  hoặc \(x^2=y^2=z^2=\frac{1}{2}\)

Vậy GTNN của P là 1

18 tháng 8 2019

Tu gia thuyet suy ra:\(xyz\ge0\Rightarrow x+y+z\le0\)

\(\sqrt{x+1}+\sqrt{y+1}+\sqrt{z+1}\le\frac{x+y+z+6}{2}\le\frac{6}{2}=3\)

Dau '=' xay ra khi \(x=y=z=0\)

3 tháng 9 2020

Giả sử \(y\) nằm giữa \(x\) và \(z\)

\(\Rightarrow\left(y-z\right)\left(y-x\right)\le0\)

\(\Leftrightarrow y^2+zx\le xy+zx\)

\(\Leftrightarrow y^2z+z^2x\le xyz+z^2x\)

\(\Leftrightarrow x^2y+y^2z+z^2x\le x^2y+xyz+z^2x=y.\left(x^2+zx+z^2\right)\)

Nên : \(P\le y.\left(x^2+zx+z^2\right)\le y.\left(x+z\right)^2\)

\(=\frac{1}{2}.2y.\left(x+z\right).\left(x+z\right)\le\frac{1}{2}.\left[\frac{2y+x+z+x+z}{3}\right]^3\) \(=\frac{1}{2}\cdot\frac{8}{27}=\frac{4}{27}\)

Dấu "=" xảy ra \(\Leftrightarrow x=0,y=\frac{1}{3},z=\frac{2}{3}\)  và các hoán vị.

6 tháng 4 2017

\(y'=x^2-6x\)

y' > 0 =>x<0;6<x

y' <3=>\(3-2\sqrt{3}< x< 3+2\sqrt{3}\)

26 tháng 5 2017

\(y'\left(x\right)=3x^2-6x\).
a) \(y'\left(x\right)>0\)\(\Leftrightarrow3x^2-6x>0\)\(\Leftrightarrow\left[{}\begin{matrix}x< 0\\x>2\end{matrix}\right.\).
Vậy \(x< 0\) hoặc \(x>2\) thì \(y'\left(x\right)>0\).
b) \(y'\left(x\right)< 3\)\(\Leftrightarrow3x^2-6x< 3\)\(\Leftrightarrow3x^2-6x-3< 0\)\(\Leftrightarrow1-\sqrt{2}< x< 1+\sqrt{2}\).
Vậy \(1-\sqrt{2}< x< 1+\sqrt{2}\) thì \(y'\left(x\right)< 3\).

16 tháng 10 2020

Vì \(x\ge1\Rightarrow x^2\ge x\)

Từ đó: \(P\ge\frac{x}{\left(x+y\right)^2+x}+\frac{x}{z^2+x}=x\left[\frac{1}{\left(x+y\right)^2+x}+\frac{1}{z^2+x}\right]\)

\(\ge x\cdot\frac{4}{\left(x+y\right)^2+x+z^2+x}=\frac{4x}{\left(x+y\right)^2+z^2+2x}\) (Cauchy Schwarz)

Lại có: \(\left(x+y\right)^2+z^2=x^2+y^2+z^2+2xy=3\left(x+y+z\right)\)

\(\le3\sqrt{2\left[\left(x+y\right)^2+z^2\right]}\)

\(\Rightarrow\left(x+y\right)^2+z^2\le18\)

\(\Rightarrow P\ge\frac{4x}{18+2x}=2-\frac{18}{x+9}\ge2-\frac{18}{1+9}=\frac{1}{5}\)

Dấu "=" xảy ra khi: \(\hept{\begin{cases}x=1\\y=2\\z=3\end{cases}}\)

Vậy Min(P) = 1/5 khi x = 1 ; y = 2 ; z = 3

NV
13 tháng 4 2020

1/ \(y=x^{-1}+\frac{2}{3}x^{-2}-\frac{2}{3}\Rightarrow y'=-\frac{1}{x^2}-\frac{4}{3x^3}\)

\(3x^3y'+3x+4=3x^3\left(-\frac{1}{x^2}-\frac{4}{3x^3}\right)+3x+4\)

\(=-3x-4+3x+4=0\) (đpcm)

2/ \(y'\le0\)

\(\Leftrightarrow3x^2-10x+7\le0\)

\(\Leftrightarrow1\le x\le\frac{7}{3}\)

NV
9 tháng 4 2019

\(xy-x+2y-2=1\)

\(\Leftrightarrow x\left(y-1\right)+2\left(y-1\right)=1\)

\(\Leftrightarrow\left(x+2\right)\left(y-1\right)=1\)

TH1: \(\left\{{}\begin{matrix}x+2=1\\y-1=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-1\\y=2\end{matrix}\right.\)

TH2: \(\left\{{}\begin{matrix}x+2=-1\\y-1=-1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-3\\y=0\end{matrix}\right.\)