Kết quả của phép tính \(\dfrac{x^2-4}{x^2-2x}\) . \(\dfrac{-3}{x+2}\) là :
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
29\(\dfrac{1}{2}\)\(\times\)\(\dfrac{2}{3}\) + 39\(\dfrac{1}{3}\)\(\times\)\(\dfrac{3}{4}\) + \(\dfrac{5}{6}\)
= \(\dfrac{59}{2}\) \(\times\) \(\dfrac{2}{3}\) + \(\dfrac{118}{3}\) \(\times\) \(\dfrac{3}{4}\) + \(\dfrac{5}{6}\)
= \(\dfrac{59}{3}\) + \(\dfrac{59}{2}\) + \(\dfrac{5}{6}\)
= \(\dfrac{295}{6}\) + \(\dfrac{5}{6}\)
= 50
= 59/2 x 2/3+ 118/3 x 3/4 + 5/6
= 59/3+ 59/2+ 5/6
= 118/6+ 177/6+ 5/6
= 50
= 59/2 x 2/3+ 118/3 x 3/4 + 5/6
= 59/3+ 59/2+ 5/6
= 118/6+ 177/6+ 5/6
= 50
\(\dfrac{2}{\left(x+1\right)^2}-\dfrac{1}{x^2-1}\)
\(=\dfrac{2}{\left(x+1\right)^2}-\dfrac{1}{\left(x+1\right)\left(x-1\right)}\)
\(=\dfrac{2\left(x-1\right)}{\left(x+1\right)^2\left(x-1\right)}-\dfrac{x+1}{\left(x+1\right)^2\left(x-1\right)}\)
\(=\dfrac{2\left(x-1\right)-x-1}{\left(x+1\right)^2\left(x-1\right)}\)
\(=\dfrac{2x-2-x-1}{\left(x+1\right)^2\left(x-1\right)}\)
\(=\dfrac{x-3}{\left(x+1\right)^2\left(x-1\right)}\)
⇒Chọn B
\(\dfrac{2}{\left(x+1\right)^2}-\dfrac{1}{x^2-1}\\ =\dfrac{2}{\left(x+1\right)^2}-\dfrac{1}{\left(x-1\right)\left(x+1\right)}\\ =\dfrac{2.\left(x-1\right)-\left(x+1\right)}{\left(x+1\right)^2.\left(x-1\right)}\\ =\dfrac{2x-2-x-1}{\left(x+1\right)^2.\left(x-1\right)}\\ =\dfrac{x-3}{\left(x+1\right)^2\left(x-1\right)}\\ =>B\)
a) \(\dfrac{1}{3x-2}-\dfrac{1}{3x+2}-\dfrac{3x-6}{9x^2-4}\)
\(=\dfrac{3x+2-3x+2-3x+6}{\left(3x-2\right)\left(3x+2\right)}\)
\(=\dfrac{-3x+10}{\left(3x-2\right)\left(3x+2\right)}\)
b) \(\dfrac{x+25}{2x^2-50}-\dfrac{x+5}{x^2-5x}-\dfrac{5-x}{2x^2+10x}\)
\(=\dfrac{x+25}{2\left(x-5\right)\left(x+5\right)}-\dfrac{x+5}{x\left(x-5\right)}+\dfrac{x-5}{2x\left(x+5\right)}\)
\(=\dfrac{x^2+25x-2\left(x+5\right)^2+\left(x-5\right)^2}{2x\left(x-5\right)\left(x+5\right)}\)
\(=\dfrac{x^2+25x-2x^2-20x-50+x^2-10x+25}{2x\left(x-5\right)\left(x+5\right)}\)
\(=\dfrac{-5x-25}{2x\left(x-5\right)\left(x+5\right)}\)
\(=\dfrac{-5\left(x+5\right)}{2x\left(x-5\right)\left(x+5\right)}=\dfrac{-5}{2x\left(x-5\right)}\)
c) Ta có: \(\dfrac{1-2x}{2x}-\dfrac{4x}{2x-1}-\dfrac{3}{2x-4x^2}\)
\(=\dfrac{-\left(2x-1\right)^2-8x^2+3}{2x\left(2x-1\right)}\)
\(=\dfrac{-\left(4x^2-4x+1\right)-8x^2+3}{2x\left(2x-1\right)}\)
\(=\dfrac{-4x^2+4x-1-8x^2+3}{2x\left(2x-1\right)}\)
\(=\dfrac{-12x^2+4x+2}{2x\left(2x-1\right)}\)
\(=\left(x-2\right)\left(x+2\right)\left(-3\right)\)
=(x−2)(x+2)(−3)