Cho n la so nguyen to >3
hoi n2 + 2006 la so nguyen to hay hop so
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, ko có số n thỏa mãn
b, n^2+2006 là hợp số với n là số nguyên tố lớn hơn 3
a)Giả sử n^2 + 2006 = m^2 (m,n la số nguyên)
Suy ra n^2 - m^2 =2006 <==> ( n - m )( n + m ) = 2006
Gọi a = n - m, b = n + m ( a,b cũng là số nguyên)
Vì tích của a và b bằng 2006 la một số chẵn, suy ra trong 2 số a và b phải có ít nhất 1 số chẵn (1)
Mặt khác ta có: a + b = (n - m) + (n + m) = 2n là 1 số chẵn ==> a và b phải cùng chẵn hoặc cùng lẻ(2)
Từ (1) và (2) suy ra a và b đều là số chẵn
Suy ra a = 2k , b= 2l ( với k,l là số nguyên)
Theo như trên ta có a.b = 2006 hay 2k.2l = 2006 hay 4.k.l = 2006
Vì k,l là số nguyên nên suy ra 2006 phải chia hết cho 4 ( điều này vô lý, vì 2006 không chia hết cho 4)
Vậy không tồn tại số nguyên n thỏa mãn đề bài đã cho.
n la so nguyen to lon hon 3 nen ko chia het cho 3.
Vay n^2 chia cho 3 du 1 <=> n^2=3k+1
Do do : n^2+2006=3k+1+2006 =3k+2007 chia het cho 3
Vay n^2+2006 la hop so
**** nhe
a)giả sử \(n^2+2006\) là số chính phương, khi đó đặt \(n^2+2006=a^2\left(n\in Z\right)\)
\(=>\left(a+n\right)\left(a-n\right)=2006\) (*)
TH1: nếu (a-n) và (a+n) khác tính chẵn lẻ thì (*) sai
TH2: nếu (a-n) và (a+n) cùng tính chẵn lẻ thì (a-n) chia hết cho 2, (a+n) chia hết cho 2 => VT chia hết cho 4
mà VP =2006 không chia hết cho 4 nên không tồn tại n
b) n là số nguyên tố >3 nên n không chia hết cho 3=> n= 3k+1 hoặc n=3k+2
Với n= 3k+1 thì \(n^2+2006=\left(3k+1\right)^2+2006=9k^2+6k+2007\) chia hết cho 3=> \(n^2+2006\) là hợp số
Với n=3k+2 thì \(n^2+2006=\left(3k+2\right)^2+2006=9k^2+12k+2010\) chia hết cho 3=> \(n^2+2006\) là hợp số
Vì (8,3)=1=>pko chia hết cho 3=> 8p ko chia hết cho 3
-nếu p và p+2 là hợp số ta thấy 8p+2, 8p, 8p+1 là 3 số nguyên liên tiếp, nên phải có 1 số chia hết cho 3.
8p+2 và 8p > 3 không chia hết cho 3 nên 8p + 1 chia hết cho 3 và > 3 => 8p + 1 là hợp số
Làm tương tự với trường hợp 8p+1 là số nguyên tố
Ak còn p=2,p=3 thì bn tự thử nhé
chị Lan ơi ,em mới học lớp 5 ,huhu..xin lỗi vì em ko giúp chị đc
Do p là số nguyên tố mà p < 3
\(\Rightarrow p=2\) Khi đó : \(2p+1=5\) là số nguyên tố
Do đó \(4p+1=4.2+1=9\) là hợp số.
Vì p là số nguyên tố lớn hơn 3 nên p sẽ có 2 dạng đó là : 3k + 1 và 3k + 2
Ta có 2 trường hợp :
* TH1 : p = 3k + 1
\(\Rightarrow\)2p + 1 = 2 . ( 3k + 1 ) + 1 = 6k + 2 + 1 = 6k + 3 = 3 . ( 2k + 1 ) là hợp số
\(\Rightarrow\)Trường hợp này bị loại vì theo đề bài 2p + 1 phải là nguyên tố .
* TH2 : p = 3k + 2
\(\Rightarrow\)2p + 1 = 2 . ( 3k + 2 ) + 1 = 6k + 4 + 5 = 6k + 5 là số nguyên tố .
\(\Rightarrow\)Trường hợp này được chọn vì đúng theo yêu cầu đề bài .
\(\Rightarrow\)4p + 1 = 4 . ( 3k + 2 ) + 1 = 12k + 8 + 1 = 12k + 9 = 3 . ( 4k + 3 ) là hợp số .
Vậy 4p + 1 là hợp số ( đpcm )
vi n la so nguyen to lon hon 3 nen n khong chia het cho 3
=> n= 3k+1 hoac 3k+2(k thuoc N*)
- Xet n=3k+1 thi n2+2006 =(3k+1)2+2006
=9k2+1+2006
=9k2+2007
=3(3k2+669)
=>n2+2006 co it nhat 3 uoc la 1 ;3va chinh no nen n2+2006 la hop so (1)
- Xet n=3k+2 thi n2+2006=(3k+2)2+2006
=9k2+4+2006
= 9k2+2010
= 3(3k2+670)
=>n2 co it nhat 3 uoc la 1;3 va chinh no nen n2+2006 la hop so (2)
tu (1) va (2) => n2+2006 la hop so
n la so nguyen to lon hon 3
- neu n=5 thi n2+2006=2031(la so nguyen to.loai)
- neu n= 7 thi n2+2006=2055(la hop so ,chon)
- neu n>7 thi n khong chia het cho 7
=>n= 7k+1; 7k+2 ; 7k+3 ; 7k+4 ; 7k+4 ; 7k+5 hoac 7k+6
- xet n=7k+1 thi n2+2006=(7k+1)2+2006
=49k2+1+2006
=49k2+2007
vi 49k2 va 2007 khong cung chia het cho so nao khac 1 nen n2+2006 la so nguyen to (loai)
- xet n=7k+2 thi n2+2006=(7k+2)2+2006
= 49k2+4+2006
= 49k2+2010
vi 49k2 va 2010 khong cung chia het cho so nao khac 1 nen n2+2006 la so nguyen to (loai)
- xet n=7k+3 thi n2+2006= (7k+3)2+2006
= 49k2+9+2006
= 49k2+2015
vi 49k2 va 2015 khong cung chia het cho so nao khac 1 nen n2+2006 la so nguyen to(loai)
- xet n=7k+4 thi n2+2006=(7k+4)2+2006
= 49k2 + 16+2006
= 49k2+2022
vi 49k2 va 2022 khong cung chia het cho so nao khac 1 nen n2+2006 la so nguyen to(loai)
- xet n=7k+5 thi n2+2006 =(7k+5)2+2006
= 49k2+25+2006
= 49k2 +2031
vi 49k2 va 2031 khong cung chia het cho so nao khac 1 nen n2+2006 la so nguyen to(loai)
- xet n=7k+6 thi n2+2006 =(7k+6)2+2006
=49k2+36+2006
=49k2+2042
vi 49k2 va 2042 khong cung chia het cho so nao khac 1 nen n2+2006 la so nguyen to(loai)
=>n>7 bi loai
=> n=7
vay n=7 va n2+2006 la hop so
Vì n là số nguyên tố lớn hơn 3 nên n có dạng 3k+1 hoặc 3k+2 (k\(\varepsilon\) N*) và n2+2006 luôn lớn hơn 3
TH1: Với n = 3k+2, ta có : n2+2006 = (3k+1)2+2006 = 9k2+ 6k + 2007 = 3 ( 3K2 +2k + 669) luôn chia hết cho 3 với mọi k\(\in\) N* \(\Rightarrow\) n2+2006 là hợp số
TH2: Với n = 3k+2, ta có: n2+ 2006 = (3k+2)2+2006 = 9k2+ 12k + 2010 = 3 ( 3k2 + 4k + 670) luôn chia hết cho 3 với mọi k\(\varepsilon\) N*\(\Rightarrow\) n2+2006 là hợp số
Vậy n2+2006 là hợp số với n là số nguyên tố lớn hơn 3
Hop số , ủng hộ mk nha