Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, ko có số n thỏa mãn
b, n^2+2006 là hợp số với n là số nguyên tố lớn hơn 3
a)Giả sử n^2 + 2006 = m^2 (m,n la số nguyên)
Suy ra n^2 - m^2 =2006 <==> ( n - m )( n + m ) = 2006
Gọi a = n - m, b = n + m ( a,b cũng là số nguyên)
Vì tích của a và b bằng 2006 la một số chẵn, suy ra trong 2 số a và b phải có ít nhất 1 số chẵn (1)
Mặt khác ta có: a + b = (n - m) + (n + m) = 2n là 1 số chẵn ==> a và b phải cùng chẵn hoặc cùng lẻ(2)
Từ (1) và (2) suy ra a và b đều là số chẵn
Suy ra a = 2k , b= 2l ( với k,l là số nguyên)
Theo như trên ta có a.b = 2006 hay 2k.2l = 2006 hay 4.k.l = 2006
Vì k,l là số nguyên nên suy ra 2006 phải chia hết cho 4 ( điều này vô lý, vì 2006 không chia hết cho 4)
Vậy không tồn tại số nguyên n thỏa mãn đề bài đã cho.
n la so nguyen to lon hon 3 nen ko chia het cho 3.
Vay n^2 chia cho 3 du 1 <=> n^2=3k+1
Do do : n^2+2006=3k+1+2006 =3k+2007 chia het cho 3
Vay n^2+2006 la hop so
**** nhe
Vì n là số nguyên tố lớn hơn 3 nên n có dạng 3k+1 hoặc 3k+2 (k\(\varepsilon\) N*) và n2+2006 luôn lớn hơn 3
TH1: Với n = 3k+2, ta có : n2+2006 = (3k+1)2+2006 = 9k2+ 6k + 2007 = 3 ( 3K2 +2k + 669) luôn chia hết cho 3 với mọi k\(\in\) N* \(\Rightarrow\) n2+2006 là hợp số
TH2: Với n = 3k+2, ta có: n2+ 2006 = (3k+2)2+2006 = 9k2+ 12k + 2010 = 3 ( 3k2 + 4k + 670) luôn chia hết cho 3 với mọi k\(\varepsilon\) N*\(\Rightarrow\) n2+2006 là hợp số
Vậy n2+2006 là hợp số với n là số nguyên tố lớn hơn 3
http://sinhvienshare.com/de-thi-khao-sat-hsg-toan-6-nam-2016-2017-huyen-tien-hai-co-dap/
vi n la so nguyen to lon hon 3 nen n khong chia het cho 3
=> n= 3k+1 hoac 3k+2(k thuoc N*)
- Xet n=3k+1 thi n2+2006 =(3k+1)2+2006
=9k2+1+2006
=9k2+2007
=3(3k2+669)
=>n2+2006 co it nhat 3 uoc la 1 ;3va chinh no nen n2+2006 la hop so (1)
- Xet n=3k+2 thi n2+2006=(3k+2)2+2006
=9k2+4+2006
= 9k2+2010
= 3(3k2+670)
=>n2 co it nhat 3 uoc la 1;3 va chinh no nen n2+2006 la hop so (2)
tu (1) va (2) => n2+2006 la hop so
n la so nguyen to lon hon 3
- neu n=5 thi n2+2006=2031(la so nguyen to.loai)
- neu n= 7 thi n2+2006=2055(la hop so ,chon)
- neu n>7 thi n khong chia het cho 7
=>n= 7k+1; 7k+2 ; 7k+3 ; 7k+4 ; 7k+4 ; 7k+5 hoac 7k+6
- xet n=7k+1 thi n2+2006=(7k+1)2+2006
=49k2+1+2006
=49k2+2007
vi 49k2 va 2007 khong cung chia het cho so nao khac 1 nen n2+2006 la so nguyen to (loai)
- xet n=7k+2 thi n2+2006=(7k+2)2+2006
= 49k2+4+2006
= 49k2+2010
vi 49k2 va 2010 khong cung chia het cho so nao khac 1 nen n2+2006 la so nguyen to (loai)
- xet n=7k+3 thi n2+2006= (7k+3)2+2006
= 49k2+9+2006
= 49k2+2015
vi 49k2 va 2015 khong cung chia het cho so nao khac 1 nen n2+2006 la so nguyen to(loai)
- xet n=7k+4 thi n2+2006=(7k+4)2+2006
= 49k2 + 16+2006
= 49k2+2022
vi 49k2 va 2022 khong cung chia het cho so nao khac 1 nen n2+2006 la so nguyen to(loai)
- xet n=7k+5 thi n2+2006 =(7k+5)2+2006
= 49k2+25+2006
= 49k2 +2031
vi 49k2 va 2031 khong cung chia het cho so nao khac 1 nen n2+2006 la so nguyen to(loai)
- xet n=7k+6 thi n2+2006 =(7k+6)2+2006
=49k2+36+2006
=49k2+2042
vi 49k2 va 2042 khong cung chia het cho so nao khac 1 nen n2+2006 la so nguyen to(loai)
=>n>7 bi loai
=> n=7
vay n=7 va n2+2006 la hop so
a)giả sử \(n^2+2006\) là số chính phương, khi đó đặt \(n^2+2006=a^2\left(n\in Z\right)\)
\(=>\left(a+n\right)\left(a-n\right)=2006\) (*)
TH1: nếu (a-n) và (a+n) khác tính chẵn lẻ thì (*) sai
TH2: nếu (a-n) và (a+n) cùng tính chẵn lẻ thì (a-n) chia hết cho 2, (a+n) chia hết cho 2 => VT chia hết cho 4
mà VP =2006 không chia hết cho 4 nên không tồn tại n
b) n là số nguyên tố >3 nên n không chia hết cho 3=> n= 3k+1 hoặc n=3k+2
Với n= 3k+1 thì \(n^2+2006=\left(3k+1\right)^2+2006=9k^2+6k+2007\) chia hết cho 3=> \(n^2+2006\) là hợp số
Với n=3k+2 thì \(n^2+2006=\left(3k+2\right)^2+2006=9k^2+12k+2010\) chia hết cho 3=> \(n^2+2006\) là hợp số