1) Tim dieu kien cua bat phuong trinh
a) (2x-1)\(\sqrt{x-2018}\ge\sqrt{x-2018}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: ĐKXĐ: x>=0
b: \(\Leftrightarrow\dfrac{2\sqrt{2}-2\sqrt{2-\sqrt{x}}+\sqrt{2x}-\sqrt{x\left(2-\sqrt{x}\right)}+2\sqrt{2}+2\sqrt{2+\sqrt{x}}-\sqrt{2x}-\sqrt{x\left(2+\sqrt{x}\right)}}{2-2+\sqrt{x}}=\sqrt{2}\)
\(\Leftrightarrow4\sqrt{2}-2\sqrt{x\left(\sqrt{x}+2\right)}=\sqrt{2x}\)
\(\Leftrightarrow\sqrt{4x\left(\sqrt{x}+2\right)}=4\sqrt{2}-\sqrt{2x}\)
\(\Leftrightarrow4x\left(\sqrt{x}+2\right)=32-16\sqrt{x}+2x\)
\(\Leftrightarrow4x\sqrt{x}+8x-32+16\sqrt{x}-2x=0\)
=>\(x\in\left\{0;1.2996\right\}\)
a) Để phương trình có nghiệm kép thì \(\Delta=0\)
<=> \(m^2-4=0\)
<=> \(\orbr{\begin{cases}m=2\\m=-2\end{cases}}\)
+) Với m = 2 thì phương trình có nghiệm kép là (-1)
+) Với m = -2 thì phương trình có nghiệm kép là (1)
b) Có : \(\Delta=b^2-4ac=9-4.2.\left(-5\right)=49>0\)
Suy ra phương trình có 2 nghiệm phân biệt (x1;x2) là (5/2;-1)
Ta có : x2 - 2x - 3m2 = 0
Tại m = 1 thì pt trở thành :
x2 - 2x - 3.12 = 0
<=> x2 - 2x - 3 = 0
<=> x2 - 3x + x - 3= 0
<=> x(x - 3) + (x - 3) = 0
<=> (x - 3)(x + 1) = 0
<=> \(\orbr{\begin{cases}x-3=0\\x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\\x=-1\end{cases}}}\)
ĐK: \(\orbr{\begin{cases}x>0\\x< -2\end{cases}}\)
\(pt\Leftrightarrow\left(x^2+2x\right)-\left(x+1\right)\sqrt{x^2+2x}+2\left(x-1\right)=0\)
\(\Leftrightarrow\left(x^2+2x\right)-\left(x+1\right)\sqrt{x^2+2x}+2\left(x+1\right)-4=0\)
Đặt \(\sqrt{x^2+2x}=A;x+1=B\left(A>0\right)\), phương trình trở thành:
\(A^2-AB+2B-4=0\)
\(\Leftrightarrow\left(A^2-4\right)+B\left(2-A\right)=0\)
\(\Leftrightarrow\left(A-2\right)\left(A+2-B\right)=0\Leftrightarrow\orbr{\begin{cases}A-2=0\\A-B+2=0\end{cases}}\)
Trở về phương trình đầu, ta có:
TH1: \(A=2\Rightarrow\sqrt{x^2+2x}=2\Rightarrow x^2+2x=4\Rightarrow\orbr{\begin{cases}x=\sqrt{5}-1\left(n\right)\\x=-\sqrt{5}-1\left(n\right)\end{cases}}\)
TH2: \(\sqrt{x^2+2x}-\left(x+1\right)=-2\Leftrightarrow\sqrt{x^2+2x}=x-1\)
ĐK: x > 1
\(pt\Rightarrow x^2+2x=x^2-2x+1\Rightarrow x=\frac{1}{4}\left(l\right)\)
KL: PT có nghiệm \(x=-\sqrt{5}-1\) và \(x=\sqrt{5}-1\)
a: \(A=\left(2\sqrt{5}-3\sqrt{5}+3\sqrt{5}\right)\cdot\sqrt{5}=2\sqrt{5}\cdot\sqrt{5}=10\)
\(B=\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}-1}+\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}+1}\)
\(=\sqrt{x}-1+\sqrt{x}=2\sqrt{x}-1\)
b: A=2B
=>\(10=4\sqrt{x}-2\)
=>\(4\sqrt{x}=12\)
=>x=9(nhận)