Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
ĐK: \(x\geq \frac{-4}{3}\)
BPT \(\Leftrightarrow x^2+6x+13-2\sqrt{3x+4}-3\sqrt{5x+9}\leq 0\)
\(\Leftrightarrow x^2+x+2(x+2-\sqrt{3x+4})+3(x+3-\sqrt{5x+9})\leq 0\)
\(\Leftrightarrow x(x+1)+2.\frac{(x+2)^2-(3x+4)}{x+2+\sqrt{3x+4}}+3.\frac{(x+3)^2-(5x+9)}{x+3+\sqrt{5x+9}}\leq 0\)
\(\Leftrightarrow x(x+1)+\frac{2x(x+1)}{x+2+\sqrt{3x+4}}+\frac{3x(x+1)}{x+3+\sqrt{5x+9}}\leq 0\)
\(\Leftrightarrow x(x+1)\left[1+\frac{2}{x+2+\sqrt{3x+4}}+\frac{3}{x+3+\sqrt{5x+9}}\right]\leq 0\)
\(\Leftrightarrow x(x+1)\leq 0\)
\(\Leftrightarrow -1\leq x\leq 0\)
Kết hợp với ĐKXĐ suy ra nghiệm của BPT là tất cả các số thực thuộc đoạn \([-1;0]\)
Với \(m=0\Rightarrow-x+1< 0\Rightarrow x>1\Rightarrow\) pt có nghiệm (thỏa mãn)
Với \(m\ne0\) BPT vô nghiệm khi và chỉ khi:
\(mx^2+\left(2m-1\right)x+m+1\ge0\) nghiệm đúng với mọi x
\(\Leftrightarrow\left\{{}\begin{matrix}m>0\\\Delta=\left(2m-1\right)^2-4m\left(m+1\right)\le0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m>0\\-8m+1\le0\end{matrix}\right.\) \(\Rightarrow m\ge\dfrac{1}{8}\)
\(\Rightarrow\) BPT đã cho có nghiệm khi \(m< \dfrac{1}{8}\)
Trường hợp 1: m=0
=>-3<0(luôn đúng)
=>Nhận
Trường hợp 2: m<>0
\(\text{Δ}=\left(2m\right)^2-4\cdot m\cdot\left(-3\right)=4m^2+12m=4m\left(m+3\right)\)
Để phương trình có nghiệm đúng thì \(\left\{{}\begin{matrix}4m\left(m+3\right)< 0\\m< 0\end{matrix}\right.\Leftrightarrow-3< m< 0\)
Vậy: -3<m<=0
Lời giải:
$x-1\geq |x^2-3x+2|\geq 0\Rightarrow |x-1|=x-1$. Do đó:
$x-1\geq |x^2-3x+2|$
$\Leftrightarrow |x-1|\geq |(x-1)(x-2)|$
$\Leftrightarrow |x-1|(1-|x-2|)\geq 0$
$\Leftrightarrow 1-|x-2|\geq 0$
$\Leftrightarrow -1\leq x-2\leq 1$
$\Leftrightarrow 1\leq x\leq 3$.
$\Rightarrow x\in [1;3]$
$b-a=2$ nên đáp án là D.