Tim cac so nguyen duonga,b,c(a<b<c) thoa man \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=n\)thuộc N*
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho tam giác ABC vuông tại A, kẻ AH vuông góc với BC (H thuộc BC), gọi M là trung điểm của BC. Trên tia đối của MA lấy D sao cho DM=MA, trên tia đối cảu CD lấy điểm I sao cho CI=CA. qua I kẻ đường thẳng song song với AC cắt đường thẳng AH tại E
a) CMR: AE=BC
b) tam giác ABC cần điều kiện nào để HE lớn nhất. vì sao??
giúp mk với
a: Trường hợp 1: p=2
=>p+11=13(nhận)
Trường hợp 2: p=2k+1
=>p+11=2k+12(loại)
b: Trường hợp 1: p=3
=>p+8=11 và p+10=13(nhận)
Trường hợp 2: p=3k+1
=>p+8=3k+9(loại)
Trường hợp 3: p=3k+2
=>p+10=3k+12(loại)
Để p + 11 là số nguyên tố thì p là số chẵn (nếu p là số lẻ thì p + 11 là số chẵn \(\Rightarrow p+11⋮2\) mà chia hết cho một số thì không phải là số nguyên tố)
Trong tập hợp các số nguyên tố chỉ có 2 là số chẵn. Vậy p = 2
b) Để p + 8, p + 10 là số nguyên tố thì p là số lẻ (nếu p là số chẵn thì \(p+8⋮2,p+10⋮2\) mà chia hết cho một số thì không phải là số nguyên tố
Nếu p = 3, p + 8 = 3 + 8 = 11 là số NT; p + 10 = 3 + 10 = 13 là số NT (chọn)
Nếu \(p=3k\left(k\in N|k>1\right)\)thì p là hợp số (loại)
Nếu \(p=3k+1\left(k\in N\right)\Rightarrow p+8=3k+1+8=3k+9⋮3\) (loại)
Nếu \(p=3k+2\left(k\in N\right)\Rightarrow p+10=3k+2+10=3k+9⋮3\)
(loại)
Vậy p=3
a, - 3 \(\le\) n < 5
n \(\in\left\{-3;-2;-1;0;1;2;3;4\right\}\)
b, Tổng :
- 3 + ( - 2 ) + ( - 1 ) + 0 + 1 + 2 + 3 + 4
= [ ( - 3 ) + 3 ] + [ ( - 2 ) + 21 ] + [ ( - 1 ) + 1 ] + 0 + 4
= 0 + 0 + 0 + 0 + 4 = 4
Ta có: a+b+b+c+c+a=11+3+2
<=> 2(a+b+c)=16
<=> a+b+c=8 =>c=8-11=-3;a=8-3=5;b=8-2=6
a + b - b -c = 11 -3 = 8
a - c = 2
a = (2+ 2):2 = 2
c = 2 - 2 = 0
b = 11 - 2 = 9
a) ta có: \(B=\frac{n}{n-3}=\frac{n-3+3}{n-3}=\frac{n-3}{n-3}+\frac{3}{n-3}\)
Để B là số nguyên
\(\Rightarrow\frac{3}{n-3}\in z\)
\(\Rightarrow3⋮n-3\Rightarrow n-3\inƯ_{\left(3\right)}=\left(3;-3;1;-1\right)\)
nếu n -3 = 3 => n= 6 (TM)
n- 3 = - 3 => n = 0 (TM)
n -3 = 1 => n = 4 (TM)
n -3 = -1 => n = 2 (TM)
KL: \(n\in\left(6;0;4;2\right)\)
b) đề như z pải ko bn!
ta có: \(C=\frac{3n+5}{n+7}=\frac{3n+21-16}{n+7}=\frac{3.\left(n+7\right)-16}{n+7}=\frac{3.\left(n+7\right)}{n+7}-\frac{16}{n+7}=3-\frac{16}{n+7}\)
Để C là số nguyên
\(\Rightarrow\frac{16}{n+7}\in z\)
\(\Rightarrow16⋮n+7\Rightarrow n+7\inƯ_{\left(16\right)}=\left(16;-16;8;-8;4;-4;2;-2;1;-1\right)\)
rùi bn thay giá trị của n +7 vào để tìm n nhé ! ( thay như phần a đó)