Tìm a , b , c thuộc Z biết :
a.b.c = a+b+c
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{2018}{ab+2018a+2018}+\frac{b}{bc+a+2018}+\frac{c}{ac+c+1}\)
\(a.b.c=2018\Rightarrow a,b,c\ne0\)
Ta có \(\frac{2018}{ab+2018a+2018}\Rightarrow\frac{2018}{b+2018+bc}\)
\(\frac{c}{ac+c+1}=\frac{bc}{abc+bc+b}=\frac{bc}{2018+bc+b}\)
\(\Rightarrow S=\frac{2018}{b+2018+bc}+\frac{b}{bc+b+2018}+\frac{bc}{2018+bc+b}=\frac{2018+b+bc}{b+2018+bc}=1\)
để nghĩ tiếp
làm tiếp
\(\frac{2013x+1}{2014x-2014}=\frac{2013\left(x-1\right)+2014}{2014\left(x-1\right)}=\frac{2013}{2014}+\frac{1}{x-1}\)
\(B_{max}\Leftrightarrow\frac{1}{x-1}max\)
+) Nếu x >1 thì x-1 >0 \(\Rightarrow\frac{1}{x-1}>0\)
+) Nếu x<1 thì x-1 <0 \(\Rightarrow\frac{1}{x-1}< 0\)
Xét x > 1 ta có
\(\frac{1}{x-1}max\Rightarrow x-1\)là số nguyên dương nhỏ nhất
\(\Rightarrow x-1=1\Rightarrow x=2\)
Vậy \(Bmax=1\frac{2018}{2019}\Leftrightarrow x=2\)
a=1
b=2
c=3
vì 1.2.3 = 1+2+3
a = 2
b = 2
c = 2
k nha