giải phương trình nghiệm nguyên:
a + ab + 1 = 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Khi \(x = 0 ⇔ 0! + y! = y! ⇔ \) Vô lý.
\(\rightarrow x \ne y\)\(\ne 0\)
Khi \(x = y \rightarrow 2 . x! = (2x)! \rightarrow 2x! = x(x+1)(x+2)...(2x)=>x(x+1)(x+2)...(2x) = 2 \rightarrow x = y = 1. \)
Nếu \(x \ne y \rightarrow\) Vì vai trò của \(x,y\) là bình đẳng nên giả sử \(x < y\)
\(\rightarrow x!+y!<2.y!≤(y+1).y!=(y+1)!<(x+y)!\)
Vì \(x \ne y \ne 1 => (x+y) \ne (y+1) \rightarrow (x+y)! \ne (y+1).\)
Vậy \((x,y) = {(1,1)}.\)
b, Chứng minh bằng phương pháp phản chứng:
Giả sử \(x^{17} + y^{17} = 19^{17} \) có nghiệm nguyên.
Không mất tổng quát, giả sử \(x < y\)
\(\rightarrow x^{17} < y^{17} ≤ 19^{17}\)
\(\rightarrow (y+1)^{17} ≤ 19^{17} \)
\(\rightarrow y^{17} + 17y^{16} = 19^{17}\)
Mà \(\rightarrow x > 17 \rightarrow x = y =18.\)
Thử lại không đúng, suy ra giả sử sai.
\(\rightarrow\) Không tồn tại số nguyên thỏa mãn.
tham khảo:https://www.vatgia.com/hoidap/5272/114204/toan-kho-lop-9-day--help.html
ta có : ax=-(x^2+1)
bx=-(x^2+1)
abx=-(x^2+1)
=>ax=bx=abx
nếu x<>0 thi a=b=ab
=> a=b=1 => 4/(ab)^2 -1/a^2-1/b^2=2
nếu x=0 thi a=b=-1
thì 4/(ab)^2 -1/a^2-1/b^2=2
vậy 4/(ab)^2 -1/a^2-1/b^2=2
a. Bạn tự giải
b. Pt có nghiệm kép khi:
\(\Delta'=\left(m+1\right)^2-4m=0\Leftrightarrow m^2-2m+1=0\Leftrightarrow m=1\)
Khi đó: \(x_{1,2}=m+1=2\)
c. Do pt có nghiệm bằng 4:
\(\Rightarrow4^2-2\left(m+1\right).4+4m=0\)
\(\Leftrightarrow8-4m=0\Rightarrow m=2\)
\(x_1x_2=4m\Rightarrow x_2=\dfrac{4m}{x_1}=\dfrac{4.2}{4}=2\)
Gọi x1,x2 là các nghiệm của phương trình đã cho
Áp dụng hệ thức Vi-et,ta có :
x1 + x2 = -5 ; x1x2 = -1
gọi y1,y2 là các nghiệm của phương trình phải lập,ta được :
y1 + y2 = x14 + x24 , y1y2 = x14x24
Ta có : x12 + x22 = ( x1 + x2 )2 - 2x1x2 = 25 + 2 - 27
Do đó : y1 + y2 = x14 + x24 = ( x12 + x22 )2 - 2x12x22 = 729 - 2 = 727
y1y2 = ( x1x2 )4 = 1
Từ đó pt phải lập có dạng : y2 - 727y + 1 = 0
Ta co: P = -1 <0
=> (1) có 2 nghiệm phân biệt khác dấu
Gọi hai nghiệm đó là \(x_1;x_2\)
=> \(x_1+x_2=-5;x_1.x_2=-1\)
Ta có: \(\left(x_1.x_2\right)^4=\left(-1\right)^4=1\)
\(\left(x_1\right)^4+\left(x_2\right)^4=\left(x_1^2+x_2^2\right)^2-2x_1^2x_2^2=\left[\left(x_1+x_2\right)^2-2x_1x_2\right]^2-2x_1^2x_2^2\)
\(=\left[\left(-5\right)^2-2.\left(-1\right)\right]^2-2.\left(-1\right)^2\)
\(=727\)
=> Phương trình có các nghiệm lũy thừa bậc 4 của các nghiệm phương trình (1) là:
\(x^2-727x+1=0\)
a, Do \(x=-4\)là một nghiệm của pt trên nên
Thay \(x=-4\)vào pt trên pt có dạng :
\(16+4m-10m+2=0\Leftrightarrow-6m=-18\Leftrightarrow m=3\)
Thay m = 3 vào pt, pt có dạng : \(x^2-3x-28=0\)
\(\Delta=9-4.\left(-28\right)=9+112=121>0\)
vậy pt có 2 nghiệm pb : \(x_1=\frac{3-11}{2}=-\frac{8}{2}=-4;x_2=\frac{3+11}{2}=7\)
b, Theo Vi et : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=6\\x_1x_2=\frac{c}{a}=7\end{cases}}\)
a: Thay m=5 vào pt, ta được:
\(x^2+12x+25=0\)
\(\Leftrightarrow x^2+12x+36=11\)
\(\Leftrightarrow\left(x+6\right)^2=11\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\sqrt{11}-6\\x=\sqrt{11}-6\end{matrix}\right.\)
b:
\(\text{Δ}=\left(2m+2\right)^2-4m^2=8m+4\)
Để phương trình có hai nghiệm phân biệt thì 8m+4>0
hay m>-1/2
Thay x=-2 vào pt, ta được:
\(4-4\left(m+1\right)+m^2=0\)
\(\Leftrightarrow m^2-4m=0\)
\(\Leftrightarrow m\left(m-4\right)=0\)
=>m=0(nhận) hoặc m=4(nhận)
ta có:\(a+ab+1=0\)
=>\(a\left(1+b\right)=-1\)
ta có:\(-1=1.\left(-1\right)=\left(-1\right).1\)
ta có bảng:
vậy........................