Cho tam giác ABC nhọn có điểm M di động trong tam giác. Gọi D,E,F lần lượt là hình chiếu của M lên BC, CA, AB. Tìm vị trí của điểm M để \(MD\times ME\times MF\) lớn nhất
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tứ giác BEMF là hình bình hành ( hai cặp cạnh đối song song) |
Kẻ AH vuông góc BC tại H , AH cắt MF tại G. Ta có diện tích ABC=1/2AH*BC và S bemf=fm*gh nên Sbemf/Sabc=2*HG/AH*FM/BC |
Gọi AM = x; MC = y thìAC = x + y Xét tam giácABC có MF // BC (gt)FM/BC=AM/AC ( hệ quả định lí Talet) Thì FM/BC=x/x+y |
Xét tam giácAHC có GM //HCthì HG/AH=CM/AC ( định lí Talet) HG/AH=x/x+y |
Do đó Sbefm/Sabc=2*xy/(x+y)^2 Ta có : (x-y)^2>=0thif(x+y)^2>=4xy thì xy/(x+y)^2<=1/4 |
Sbemf/Sabc<=2*1/4hay Sbemf<=1/2Sabc |
Mà Sabc không đổi nên Sbemf đạt giá trị lớn nhất là 1/2Sabc khi và chỉ khi x=y Hay M là trung điểm của AC. Gõ mỏi tay ko biết đc j ko-_- |
Kẻ AH ⊥ DE tại H
D A E ^ = 2 B A C ^
=> D A H ^ = B A C ^
Từ DE=2DH; AD=AM=AE
Suy ra DH=AD.sin D A H ^
Từ đó D E m a x <=> AM = 2R
a)tứ giác AEDF là hình chữ nhật (vì E=A=F=900 )
Để tứ giác AEDF là hình vuông thì AD là tia phân giác của góc BAC
b)do tứ giác AEDF là hình chữ nhật nên AD=EF
=>3AD+4EF nhỏ nhất => AD nhỏ nhất
D là hình chiếu góc vuông của A lên BC
a: Xét tứ giác ADME có
gócADM=góc AEM=góc DAE=90 độ
=>ADME là hình chữ nhật
b: góc AHM=góc AEM=góc ADM=90 độ
=>A,D,H,M,E cùng thuộc đường tròn đường kính AM
mà ED và AM cùng là đường kính của đường tròn đường kính AM(ED=AM)
nên H nằm trên đường tròn đường kính DE
=>góc DHE=90 độ
c: DE=AM
AM>=AH
=>DE>=AH
Dấu = xảy ra khi M trùng với H
=>M là chân đường cao kẻ từ A xuống BC