K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 3 2021

gọi ƯCLN(n,n+1)=d 

=> \(n⋮d\) và \(n+1⋮d\) 

=> \(\left[\left(n+1\right)-n\right]⋮d\)  

=> \(1⋮d\)  

=> \(d\in\left\{1;\left(-1\right)\right\}\) 

Vì các phân số tối giản có ƯCLN của tử và mẫu là 1 và -1 

=>\(\frac{n}{n+1}\) là phân số tối giản ( điều phải chứng minh)

10 tháng 3 2021

ps tối giẩn thì tử và mẫu là 2 số nguyên tố cùng nhau mà n và n+1 liên tiếp nên là 2 ssos nguyên tố cùng nhau vậy  n/ n+1 tối giản

8 tháng 5 2023

A = \(\dfrac{2n^2+n+1}{n}\) ( n #0)

Gọi ước chung của ớn nhất của 2n2 + n + 1 và n là d

Ta có: \(\left\{{}\begin{matrix}2n^2+n+1⋮d\\n⋮d\end{matrix}\right.\)  ⇒  1 ⋮ d ⇒ d = 1

Vậy ước chung lớn nhất của 2n2 + n + 1 và n là 1 

hay phân số \(\dfrac{2n^2+n+1}{n}\) là phân số tối giản ( đpcm)

13 tháng 2 2016

Gọi d là ƯCLN ( n+1; n+2 )

=> n + 1 ⋮ d

=> n + 2 ⋮ d

=> [ n + 2 - n + 1 ] ⋮ d

=> 1 ⋮ d => d = 1

Vì ƯCLN ( n + 1; n + 2 ) = 1 => n + 1 / n + 2 là p/s tối giản

8 tháng 5 2022

Gọi \(d=ƯC\left(n;n+1\right)\)

\(\Rightarrow\left\{{}\begin{matrix}n⋮d\\n+1⋮d\end{matrix}\right.\)

\(\Rightarrow n+1-n⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

\(\Rightarrow\) phân số \(\dfrac{n}{n+1}\) là phân số tối giản

12 tháng 5 2021

Câu 1:

gọi n-1/n-2 là M.

Để M là phân số tối giản thì ƯCLN (n - 1; n - 2) = 1 hay -1

Theo đề bài: M = n−1n−2n−1n−2 (n ∈∈Zℤ; n ≠2≠2)

Gọi d = ƯCLN (n - 1; n - 2) 

=> n - 1 - (n - 2) ⋮⋮d       *n - 1 - (n - 2) = n - 1 - n + 2 = n - n + 2 - 1 = 0 + 2 - 1 = 2 - 1 = 1

=> 1 ⋮⋮d

=> d ∈∈Ư (1)

Ư (1) = {1}

=> d = 1

Mà ngay từ lúc đầu d phải bằng 1 rồi.

Vậy nên với mọi n ∈∈Z và n ≠2≠2thì M là phân số tối giản.

19 tháng 2 2019

Vì n và n+1 là 2 số liên tiếp 

=>n và n+1 là 2 số nguyên tố cùng nhau

=>ƯCLN(n,n+1)=1

=>n/n+1 là phân số tối giản

19 tháng 2 2019

Gọi d = ƯCLN(n;n+1) \(\Rightarrow\hept{\begin{cases}n⋮d\\n+1⋮d\end{cases}}\Rightarrow n+1-n⋮d\Rightarrow1⋮d\Rightarrow d=\pm1\)
Vậy \(\frac{n}{n+1}\)là phân số tối giản \(\forall n\in N\)

gọi d thuộc ước chung lớn nhất của n+1 và 2n+1(d thuộc N*)

suy ra n+1 chia hết cho d

2n+1 chia hết cho d 

nên 2.(n+1) chia hết cho d

2n+1 chia hết cho d

2n+2 chia hết chod 

2n+1 chia hết cho d

(2n+2)-(2n+1) chia hết cho d

nên 1 chia hết cho d

vậy d=1 

c/m p/số n+1/2n+1 với n thuộc N* là phân số tối giản 

 

 

7 tháng 3 2018

b)Gọi U7CLN(4n+1;6n+1)=b

ta có : 4n+1 chia hết cho b ; 6n+1 chia hết cho b

suy ra : 3(4n+1) chia hết cho b : 2(6n+1) chia hết cho b

suy ra : [3(4n+1)-2(6n+1)] chia hết cho b

[(12n+3)-(12n+2)] chia hết cho b

12n+3-12n-2 chia hết cho b

suy ra : 1 chia hết cho b nên b=1

suy ra ƯCLN(4n+1;6n+1)=1

suy ra : 4n+1/6n+1 là phân số tối giản

7 tháng 3 2018

Giúp mk vs mk tk 5 lun