Tìm x
x-6/1979+x-4/1981+x-2/1983=x+2/1987+x+4/1989+x+6/1991
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có
\(1+\frac{1}{3}+\frac{1}{6}+...+\frac{2}{x\left(x+1\right)}\) \(=\)\(1+2\)\(\left(\frac{1}{2}-\frac{1}{3}\right)+2\left(\frac{1}{3}-\frac{1}{4}\right)+...+2\left(\frac{1}{x}-\frac{1}{x+1}\right)\)\(=2-\frac{2}{x+1}\)
Nên ta có
\(2-\frac{2}{x+1}=1+\frac{1989}{1991}\Leftrightarrow\frac{2}{x+1}=\frac{2}{1991}\Leftrightarrow x=1990\)
\(2+\frac{2}{3}+\frac{2}{6}+\frac{2}{12}+...+\frac{2}{x\left(x+1\right)}=1\frac{1989}{1991}\)
\(2\left(1+\frac{1}{3}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x\left(x+1\right)}\right)=1\frac{1989}{1991}\)
\(2\left(1+\frac{1}{3}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}\right)=1\frac{1989}{1991}\)
\(2\left(1+\frac{1}{3}+\frac{1}{2}-\frac{1}{x+1}\right)=1\frac{1989}{1991}\)
\(\frac{8}{3}+2-\frac{2}{x+1}=1\frac{1989}{1991}\)
\(\frac{2}{x+1}=\frac{13}{10}\)( số thập phân dài quá nên mk lấy số tròn thôi nha )
\(x+1=2:\frac{13}{10}\)
\(x+1=\frac{20}{13}\)
\(\Leftrightarrow x=\frac{7}{13}\)
=> \(\frac{x-1}{1995}+1-1-\frac{x+3}{1991}=\frac{x+7}{1987}+1-1-\frac{x+11}{1983}\)
=> \(\left(\frac{x-1}{1995}+1\right)-\left(1+\frac{x+3}{1991}\right)=\left(\frac{x+7}{1987}+1\right)-\left(1+\frac{x+11}{1983}\right)\)
=> \(\frac{x+1994}{1995}-\frac{x+1994}{1991}=\frac{x+1994}{1987}-\frac{x+1994}{1983}\)
=> \(\left(x+1994\right)\left(\frac{1}{1995}-\frac{1}{1991}-\frac{1}{1987}+\frac{1}{1983}\right)=0\)
=>x + 1994 = 0 Vì \(\left(\frac{1}{1995}-\frac{1}{1991}-\frac{1}{1987}+\frac{1}{1983}\right)\ne0\)
=> x = -1994