K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
18 tháng 8 2020
\(2\left(1+\frac{1}{3}+\frac{1}{2.3}+\frac{1}{3.4}+......+\frac{1}{x\left(x+1\right)}\right)=\frac{3980}{1991}\)
\(1+\frac{1}{3}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+......+\frac{x+1-x}{x\left(x+1\right)}=\frac{1990}{1991}\)
\(1+\frac{1}{3}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+......+\frac{1}{x}-\frac{1}{x-1}=\frac{1990}{1991}\)
\(1+\frac{1}{3}+\frac{1}{2}-\frac{1}{x-1}=\frac{1990}{1991}\)
\(\frac{1}{x-1}=\frac{11}{6}-\frac{1990}{1991}=\frac{9961}{11946}\)
\(x-1=\frac{11946}{9961}\Rightarrow x=\frac{21907}{9961}\)
NT
0
NV
3
15 tháng 4 2016
Sai đề rồi bạn ơi, 2 + ... không thể nào = 1 1989/1991 được bạn ạ !!!
\(2+\frac{2}{3}+\frac{2}{6}+\frac{2}{12}+...+\frac{2}{x\left(x+1\right)}=1\frac{1989}{1991}\)
\(2\left(1+\frac{1}{3}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x\left(x+1\right)}\right)=1\frac{1989}{1991}\)
\(2\left(1+\frac{1}{3}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}\right)=1\frac{1989}{1991}\)
\(2\left(1+\frac{1}{3}+\frac{1}{2}-\frac{1}{x+1}\right)=1\frac{1989}{1991}\)
\(\frac{8}{3}+2-\frac{2}{x+1}=1\frac{1989}{1991}\)
\(\frac{2}{x+1}=\frac{13}{10}\)( số thập phân dài quá nên mk lấy số tròn thôi nha )
\(x+1=2:\frac{13}{10}\)
\(x+1=\frac{20}{13}\)
\(\Leftrightarrow x=\frac{7}{13}\)