D= \(\sqrt{13+4\sqrt{3}}-\sqrt{12}\) xin cách giải luôn ạ, cảm ơn nhiều
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2
b, `\sqrt{3x^2}=x+2` ĐKXĐ : `x>=0`
`=>(\sqrt{3x^2})^2=(x+2)^2`
`=>3x^2=x^2+4x+4`
`=>3x^2-x^2-4x-4=0`
`=>2x^2-4x-4=0`
`=>x^2-2x-2=0`
`=>(x^2-2x+1)-3=0`
`=>(x-1)^2=3`
`=>(x-1)^2=(\pm \sqrt{3})^2`
`=>` $\left[\begin{matrix} x-1=\sqrt{3}\\ x-1=-\sqrt{3}\end{matrix}\right.$
`=>` $\left[\begin{matrix} x=1+\sqrt{3}\\ x=1-\sqrt{3}\end{matrix}\right.$
Vậy `S={1+\sqrt{3};1-\sqrt{3}}`
\(a)\)\(\sqrt{15-6\sqrt{6}}+\sqrt{33-12\sqrt{6}}\)
\(=\)\(\sqrt{6-6\sqrt{6}+9}+\sqrt{24-12\sqrt{6}+9}\)
\(=\)\(\sqrt{\left(\sqrt{6}+3\right)}+\sqrt{\left(\sqrt{24}+3\right)}\)
\(=\)\(\left|\sqrt{6}+3\right|+\left|\sqrt{24}+3\right|\)
\(=\)\(\sqrt{6}+3+\sqrt{24}+3\)
\(=\)\(\sqrt{6}\left(1+\sqrt{4}\right)+9\)
\(=\)\(3\sqrt{6}+9\)
Chúc bạn học tốt ~
\(b)\)\(\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{4-2\sqrt{3}}\)
\(=\)\(\left|2-\sqrt{3}\right|+\sqrt{3-2\sqrt{3}+1}\)
\(=\)\(2-\sqrt{3}+\sqrt{\left(\sqrt{3}-1\right)^2}\) ( vì \(2=\sqrt{4}>\sqrt{3}\) )
\(=\)\(2-\sqrt{3}+\left|\sqrt{3}-1\right|\)
\(=\)\(2-\sqrt{3}+\sqrt{3}-1\) ( vì \(\sqrt{3}>\sqrt{1}=1\) )
\(=\)\(1\)
Chúc bạn học tốt ~
PS : mới lớp 8 sai thì thông cảm >.<
khi mk tính bằng máy tính thì kết quả không = 1 mà bằng 0,7136222575 nhé bn.
vì vậy k cần CM nữa đâu Kết quả không = 1. K tin thì tính thử đi!!!
Đây là câu trả lời của mk, k cho mk nha!!!
\(A=2\sqrt{27}-\sqrt{75}-\sqrt{\frac{4}{3}}\)\(=2\sqrt{9.3}-\sqrt{25.3}-\sqrt{\frac{4.3}{9}}\)\(=2.3\sqrt{3}-5\sqrt{3}-\frac{2}{3}\sqrt{3}\)\(=6\sqrt{3}-5\sqrt{3}-\frac{2}{3}\sqrt{3}\)\(=\frac{1}{3}\sqrt{3}\)\(=\frac{\sqrt{3}}{3}\)
Ta có:
\(\left(\sqrt{5-3\sqrt{2}}+\sqrt{3\sqrt{2}-4}\right)^2=5-3\sqrt{2}+3\sqrt{2}-4+2\sqrt{5-3\sqrt{2}}\sqrt{3\sqrt{2}-4}\)
\(=1+2\sqrt{27\sqrt{2}-38}\)
Áp dụng vào bài toán t được
\(\dfrac{\sqrt{1+2\sqrt{27\sqrt{2}-38}}-\sqrt{5-3\sqrt{2}}}{\sqrt{3\sqrt{2}-4}}\)
\(=\dfrac{\sqrt{\left(\sqrt{5-3\sqrt{2}}+\sqrt{3\sqrt{2}-4}\right)^2}-\sqrt{5-3\sqrt{2}}}{\sqrt{3\sqrt{2}-4}}\)
\(=\dfrac{\sqrt{5-3\sqrt{2}}+\sqrt{3\sqrt{2}-4}-\sqrt{5-3\sqrt{2}}}{\sqrt{3\sqrt{2}-4}}=1\)
Bài 4:
a, \(\sqrt{3x+4}-\sqrt{2x+1}=\sqrt{x+3}\) (ĐK: \(x\ge\dfrac{-1}{2}\))
\(\Rightarrow\) \(\left(\sqrt{3x+4}-\sqrt{2x+1}\right)^2\) = x + 3
\(\Leftrightarrow\) \(3x+4+2x+1-2\sqrt{\left(3x+4\right)\left(2x+1\right)}=x+3\)
\(\Leftrightarrow\) \(4x+2=2\sqrt{6x^2+11x+4}\)
\(\Leftrightarrow\) \(2x+1=\sqrt{6x^2+11x+4}\)
\(\Rightarrow\) \(4x^2+4x+1=6x^2+11x+4\)
\(\Leftrightarrow\) \(2x^2+7x+3=0\)
\(\Delta=7^2-4.2.3=25\); \(\sqrt{\Delta}=5\)
Vì \(\Delta\) > 0; theo hệ thức Vi-ét ta có:
\(x_1=\dfrac{-7+5}{4}=\dfrac{-1}{2}\)(TM); \(x_2=\dfrac{-7-5}{4}=-3\) (KTM)
Vậy ...
Các phần còn lại bạn làm tương tự nha, phần d bạn chuyển \(-\sqrt{2x+4}\) sang vế trái rồi bình phương 2 vế như bình thường là được
Bài 5:
a, \(\sqrt{x+4\sqrt{x}+4}=5x+2\)
\(\Leftrightarrow\) \(\sqrt{\left(\sqrt{x}+2\right)^2}=5x+2\)
\(\Rightarrow\) \(\sqrt{x}+2=5x+2\)
\(\Leftrightarrow\) \(5x-\sqrt{x}=0\)
\(\Leftrightarrow\) \(\sqrt{x}\left(5\sqrt{x}-1\right)=0\)
\(\Leftrightarrow\) \(\left[{}\begin{matrix}\sqrt{x}=0\\5\sqrt{x}-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{25}\end{matrix}\right.\)
Vậy ...
Phần b cũng là hằng đẳng thức thôi nha \(\sqrt{x^2-2x+1}=\sqrt{\left(x-1\right)^2}=x-1\); \(\sqrt{x^2+4x+4}=\sqrt{\left(x+2\right)^2}=x+2\) rồi giải như bình thường là xong nha!
VD1:
a, \(\sqrt{2x-1}=\sqrt{2}-1\) (x \(\ge\) \(\dfrac{1}{2}\))
\(\Leftrightarrow\) \(2x-1=\left(\sqrt{2}-1\right)^2\) (Bình phương 2 vế)
\(\Leftrightarrow\) \(2x-1=2-2\sqrt{2}+1\)
\(\Leftrightarrow\) \(2x=4-2\sqrt{2}\)
\(\Leftrightarrow\) \(x=2-\sqrt{2}\) (TM)
Vậy ...
Phần b tương tự nha
c, \(\sqrt{3}x^2-\sqrt{12}=0\)
\(\Leftrightarrow\) \(\sqrt{3}x^2=\sqrt{12}\)
\(\Leftrightarrow\) \(x^2=2\)
\(\Leftrightarrow\) \(x=\pm\sqrt{2}\)
Vậy ...
d, \(\sqrt{2}\left(x-1\right)-\sqrt{50}=0\)
\(\Leftrightarrow\) \(\sqrt{2}\left(x-1\right)=\sqrt{50}\)
\(\Leftrightarrow\) \(x-1=5\)
\(\Leftrightarrow\) \(x=6\)
Vậy ...
VD2:
Phần a dễ r nha (Bình phương 2 vế rồi tìm x như bình thường)
b, \(\sqrt{x^2-x}=\sqrt{3-x}\) (\(x\le3\); \(x^2\ge x\))
\(\Leftrightarrow\) \(x^2-x=3-x\) (Bình phương 2 vế)
\(\Leftrightarrow\) \(x^2=3\)
\(\Leftrightarrow\) \(x=\pm\sqrt{3}\) (TM)
Vậy ...
c, \(\sqrt{2x^2-3}=\sqrt{4x-3}\) (x \(\ge\) \(\dfrac{\sqrt{3}}{2}\))
\(\Leftrightarrow\) \(2x^2-3=4x-3\) (Bình phương 2 vế)
\(\Leftrightarrow\) \(2x^2-4x=0\)
\(\Leftrightarrow\) \(2x\left(x-2\right)=0\)
\(\Leftrightarrow\) \(\left[{}\begin{matrix}2x=0\\x-2=0\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left[{}\begin{matrix}x=0\left(KTM\right)\\x=2\left(TM\right)\end{matrix}\right.\)
Vậy ...
Chúc bn học tốt! (Có gì không biết cứ hỏi mình nha!)
a, \(\sqrt{17-12\sqrt{2}}-\sqrt{17+12\sqrt{2}}\)
\(=\sqrt{17-2.3.2\sqrt{2}}-\sqrt{17+2.3.2\sqrt{2}}\)
\(=\sqrt{9-2.3.2\sqrt{2}+8}-\sqrt{9+2.3.2\sqrt{2}+8}\)
\(=\sqrt{\left(3-2\sqrt{2}\right)^2}-\sqrt{\left(3+2\sqrt{2}\right)^2}=\left|3-2\sqrt{2}\right|-\left|3+2\sqrt{2}\right|\)
\(=3-2\sqrt{2}-3-2\sqrt{2}=-4\sqrt{2}\)
b, \(\sqrt{31-12\sqrt{3}}-\sqrt{31+12\sqrt{3}}\)
\(=\sqrt{31-2.2.3\sqrt{3}}-\sqrt{31+2.2.3\sqrt{3}}\)
\(=\sqrt{\left(3\sqrt{3}-2\right)^2}-\sqrt{\left(3\sqrt{3}+2\right)^2}=\left|3\sqrt{3}-2\right|-\left|3\sqrt{3}+2\right|\)
\(=3\sqrt{3}-2-3\sqrt{3}-2=-4\)
\(=\sqrt{5\sqrt{3}+\sqrt{5\sqrt{48-10\sqrt{\left(2+\sqrt{3}\right)^2}}}}\)
\(=\sqrt{5\sqrt{3}+\sqrt{5\sqrt{48-10\left(2+\sqrt{3}\right)}}}\)
\(=\sqrt{5\sqrt{3}+\sqrt{5\sqrt{48-20-10\sqrt{3}}}}\)
\(=\sqrt{5\sqrt{3}+\sqrt{5\sqrt{28-10\sqrt{3}}}}\)
\(=\sqrt{5\sqrt{3}+\sqrt{5\sqrt{\left(5-\sqrt{3}\right)^2}}}\)
\(=\sqrt{5\sqrt{3}+\sqrt{5\left(5-\sqrt{3}\right)}}=\sqrt{5\sqrt{3}+\sqrt{25-5\sqrt{3}}}\)
Trần Đức Thắng lm nốt đi
\(D=2\sqrt{3}+1-2\sqrt{3}=1\)
hướng dẫn cách giải với được không ạ