K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 4 2021

|a| + |b| >= |a+b| 

<=> (|a|+|b|)^2 >= |a+b|^2

<=> a^2+b^2 +2|ab| >= a^2+b^2+2ab

<=> |ab| >= ab (luôn đúng)

Dấu = xảy ra khi a,b cùng dấu

3 tháng 11 2021

|a| + |b| >= |a+b| 

<=> (|a|+|b|)^2 >= |a+b|^2

<=> a^2+b^2 +2|ab| >= a^2+b^2+2ab

<=> |ab| >= ab (luôn đúng)

Dấu = xảy ra khi a,b cùng dấu

10 tháng 7 2018

a) Áp dụng BĐT AM-GM ta có:

        \(x+y\ge2\sqrt{xy}\)

\(\Rightarrow\)\(\frac{x+y}{2}\ge\sqrt{xy}\)

Dấu "=" xảy ra  \(\Leftrightarrow\)\(x=y\)

b)  Áp dụng BĐT AM-GM ta có:

    \(\frac{\sqrt{x}}{\sqrt{y}}+\frac{\sqrt{y}}{\sqrt{x}}\ge2\sqrt{\frac{\sqrt{x}}{\sqrt{y}}.\frac{\sqrt{y}}{\sqrt{x}}}=2\)

Dấu "=" xảy ra  \(\Leftrightarrow\)\(x=y\)

NV
5 tháng 5 2021

Cách đơn giản nhất là sử dụng phép biến đổi tương đương:

BĐT đã cho tương đương:

\(\dfrac{x+y}{xy}\ge\dfrac{4}{x+y}\)

\(\Leftrightarrow\left(x+y\right)^2\ge4xy\)

\(\Leftrightarrow x^2-2xy+y^2\ge0\)

\(\Leftrightarrow\left(x-y\right)^2\ge0\) (luôn đúng)

Vậy BĐT đã cho đúng.

Dấu "=" xảy ra khi x=y

20 tháng 3 2023

3.1 

Xét hiệu :

\(\left(\dfrac{a+b}{2}\right)^2-ab=\dfrac{a^2+2ab+b^2}{4}-\dfrac{4ab}{4}\)

\(=\dfrac{a^2-2ab+b^2}{4}=\dfrac{\left(a-b\right)^2}{4}\ge0\forall a,b\in R\)

Vậy \(\left(\dfrac{a+b}{2}\right)^2\ge ab,\forall a,b\in R\)

Dấu bằng xảy ra : \(\Leftrightarrow a=b\)

3.2

Áp dụng kết quả của câu 3.1 vào câu 3.2 ta được:

\(\left(a+b+c\right)^2=[a+\left(b+c\right)]^2\ge4a\left(b+c\right)\)

Mà : \(a+b+c=1\left(gt\right)\)

nên : \(1\ge4a\left(b+c\right)\)

\(\Leftrightarrow b+c\ge4a\left(b+c\right)^2\) ( vì a,b,c không âm nên b+c không âm )

Mà : \(\left(b+c\right)^2\ge4bc\Leftrightarrow\left(b-c\right)^2\ge0,\forall b,c\in N\)

\(\Rightarrow b+c\ge16abc\)

Dấu bằng xảy ra : \(\Leftrightarrow\left\{{}\begin{matrix}a=b+c\\b=c\end{matrix}\right.\Leftrightarrow b=c=\dfrac{1}{4};a=\dfrac{1}{2}\)

1<=x<=3

=>(x-1)>=0 và (x-3)<=0

=>(x-1)(x-3)<=0

=>x^2-4x+3<=0

=>x^2+3<=4x

Dấu = xảy ra khi x=1 hoặc x=3

1 tháng 4 2017

c) Áp dụng BĐT cô si cho 2 hai số dương \(a;b\) ta có:

\(a+b\ge2\sqrt{ab}\)

\(\frac{1}{a}+\frac{1}{b}\ge\frac{1}{\sqrt{ab}}\)

\(\Rightarrow\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)\ge4\)

\(\Rightarrow\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)

Dấu "=" xảy ra khi \(\Leftrightarrow a=b\)

23 tháng 5 2021

Áp dụng cosi có:

\(\sqrt{x\left(2x+y\right)}=\dfrac{1}{\sqrt{3}}\sqrt{3x\left(2x+y\right)}\le\dfrac{1}{\sqrt{3}}.\dfrac{5x+y}{2}\)

\(\sqrt{y\left(2y+x\right)}\le\dfrac{1}{\sqrt{3}}.\dfrac{5y+x}{2}\)

\(\Rightarrow P\ge\dfrac{x+y}{\dfrac{1}{2\sqrt{3}}\left(6x+6y\right)}=\dfrac{\sqrt{3}}{3}\)

Dấu = xảy ra khi x=y

23 tháng 5 2021

Bài này áp dụng bunhia :v

Áp dụng bunhia với 2 cặp số `(sqrtx,sqrty),(sqrt{2x+y},sqrt{2y+x})`

`(x+y)(2x+y+2y+x)>=(sqrt{x(2x+y)}+sqrt{y(2y+x)})^{2}`

`<=>3(x+y)^{2}>=(sqrt{x(2x+y)}+sqrt{y(2y+x)})^{2}`

`=>sqrt{x(2x+y)}+sqrt{(2y+x)}<=sqrt3(x+y)`

`=>P>=1/sqrt3`

Dấu "="`<=>x=y`