Tính giá trị biểu thức
B = ( 1 - 1/2) ( 1- 1/3) ( 1-1/4).............(1-1/2011) (1- 1/2012)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nhận xét nè: ở mẫu số tại các phân số có tử số + mẫu số = 2012. Vì vậy mục tiêu là tạo ra con 2012 ở các phân số của mẫu số. E xử con tử số ở phân số mẫu số sao cho ra con 2012 là được =))
\(A=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2014}}{\frac{2013}{1}+\frac{2012}{2}+\frac{2011}{3}+...+\frac{1}{2013}}\)
\(A=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2014}}{\left(\frac{2012}{2}+1\right)+\left(\frac{2011}{3}+1\right)+...+\left(\frac{1}{2013}+1\right)+1}\)
\(A=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2014}}{\frac{2014}{2}+\frac{2014}{3}+...+\frac{2014}{2013}+\frac{2014}{2014}}\)
\(A=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2014}}{2014.\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2014}\right)}\)\
\(A=\frac{1}{2014}\)
\(\frac{298}{719}:\left(\frac{1}{4}+\frac{1}{12}-\frac{1}{3}\right)-\frac{2011}{2012}\)
\(=\frac{298}{719}:0-\frac{2011}{2012}\)
Vậy biểu thức trên không có kết quả vì không số nào có thể chia hết cho 0
\(\text{Tính giá trị của biểu thức :}\)
\(\frac{298}{719}\text{ : }\left(\frac{1}{4}+\frac{1}{12}-\frac{1}{3}\right)-\frac{2011}{2012}\)
\(=\frac{298}{719}\text{ : }\left(\frac{3}{12}+\frac{1}{12}-\frac{4}{12}\right)-\frac{2011}{2012}\)
\(=\frac{298}{719}\text{ : }\left(\frac{4}{12}-\frac{4}{12}\right)-\frac{2011}{2012}\)
\(=\frac{298}{719}\text{ : }0-\frac{2011}{2012}\)
\(=0-\frac{2011}{2012} \)
\(=-0,999502982\)
\(\text{✅}\)
\(B=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{2012}\right)\)
\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{2011}{2012}\)
\(=\frac{1}{2012}\)
Vậy \(B=\frac{1}{2012}\).
Xét biểu thức A
A= 1+(1+2) +....... +(1+2+3+...+2012)
A = 1+1+2+1+2+3+...+1+2+3+...+2012
A có 2012 số 1
có 2011 số 2
...
có 1 số 2012
A = 1 x2012 +2x2011+...+2012x1
mà B = 1 x2012 +2x2011+...+2012x1
nên A=B
\(A=1+\left(1+2\right)+\left(1+2+3\right)+...+\left(1+2+3+...+2012\right)\)
\(=\left(1+1+1+...+1\right)+\left(2+2+...+2\right)+...+2012\)
\(=1\times2012+2\times2011+...+2012\times1\)
\(=B\)
1/156 đó bạn nhớ cho