Chứng tỏ rằng
1+1/2+1/3+.......+1/21999>1000
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TA CÓ:
A=30+3+32+33+........+311
(30+3+32+33)+....+(38+39+310+311)
3(0+1+3+32)+......+38(0+1+3+32)
3.13+....+38.13 cHIA HẾT CHO 13 NÊN A CHIA HẾT CHO 13( đpcm)
a, Điều đương nhiên
b,\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{999.1000}\)
= \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.........+\frac{1}{999}-\frac{1}{1000}\)
= \(1-\frac{1}{1000}\)
= \(\frac{999}{1000}\)
Ta có:
\(\dfrac{1}{2}< 1;\dfrac{3}{4}< 1;\dfrac{5}{6}< 1;...;\dfrac{999}{1000}< 1\)
\(\Rightarrow\dfrac{1}{2}.\dfrac{3}{4}.\dfrac{5}{6}...\dfrac{999}{1000}< 1\)
\(\Rightarrow p< 1\)
Ta có: \(\dfrac{1}{501}< \dfrac{1}{500}\)
\(\dfrac{1}{502}< \dfrac{1}{500}\)
\(\dfrac{1}{503}< \dfrac{1}{500}\)
..................
\(\dfrac{1}{1000}< \dfrac{1}{500}\)
\(\Rightarrow\dfrac{1}{501}+\dfrac{1}{502}+\dfrac{1}{503}+...+\dfrac{1}{1000}< \dfrac{1}{500}+\dfrac{1}{500}+\dfrac{1}{500}+...+\dfrac{1}{500}\)
\(\Rightarrow\dfrac{1}{501}+\dfrac{1}{502}+\dfrac{1}{503}+...+\dfrac{1}{1000}< \dfrac{500}{500}=1\)
Vậy \(\dfrac{1}{501}+\dfrac{1}{502}+\dfrac{1}{503}+...+\dfrac{1}{1000}< 1\)
Đặt A = \(\dfrac{1}{501}+\dfrac{1}{502}+\dfrac{1}{503}+...+\dfrac{1}{1000}\)
Ta thấy A có 500 phân số.
Ta có: \(\dfrac{1}{501}< \dfrac{1}{500}\\ \dfrac{1}{502}< \dfrac{1}{500}\)
....................
\(\dfrac{1}{1000}< \dfrac{1}{500}\)
\(\Rightarrow\) A< \(\dfrac{1}{500}+\dfrac{1}{500}+...+\dfrac{1}{500}\)( có 500 phân số \(\dfrac{1}{500}\))
\(\Rightarrow A< 500.\dfrac{1}{500}\\ \Rightarrow A< \dfrac{500}{500}\\ \Rightarrow A< 1\)
Chắc là bạn hiểu chứ ?